SECTION-A

1. Find HCF of $\mathbf{1 3 5}$ and $\mathbf{2 2 5}$ using Euclid's division Algoritum.

Ans. Step I: Since $225>135$, we apply the division lemma, to get $225=135 \times 1+90$.
Step II: Since the remainder $90 \neq 0$, we apply the division lemma to 135 and 90 , to get $135=90 \times 1+45$.

Step III: Since the remainder $45 \neq 0$, so we again apply the division lemma to 90 and 45 , to get $90=45 \times 2+0$.

The remainder has now became zero, so our procedure stops.
Since the divisor at this stage is 45 , So the HCF of 225 and 335 is 45 .

2. Find LCM and HCF of 510 and 92.

Ans. We have prime factor of 510

2	510
3	255
5	85
	17

$=2 \times 3 \times 5 \times 17$
Also, prime factor of 92

2	92
2	46
	23

$=2 \times 2 \times 23=2^{2} \times 23$.
$\operatorname{HCF}(510,92)=$ Product of the smallest power of each common factor in the numbers.
Hence, $\operatorname{HCF}(510,92)=2$.
$\operatorname{LCM}(510,92)=$ product of the greatest power of each prime factor involved in the numbers.

Hence, $\operatorname{LCM}(510,92)=2^{2} \times 3 \times 5 \times 17 \times 23=23460$
Verfication:
$L C M \times H C F=$ Product of numbers
$\Rightarrow 23460 \times 2=510 \times 92$
$\Rightarrow 46920=46920$.
3. Solve the following pair of Linear equation:

$$
\begin{aligned}
& x+y=5 \\
& 2 x-3 y=4
\end{aligned}
$$

Ans. Given pair of linear equations

$$
\begin{gather*}
x+y=5 \tag{i}\\
2 x-3 y=4 \tag{ii}
\end{gather*}
$$

From equation (i), we get

$$
\begin{equation*}
x=5-y \tag{iii}
\end{equation*}
$$

Substitution the value of x in equation (ii), we get

$$
\begin{array}{ll}
& 2(5-y)-3 y=4 \\
\Rightarrow & 10-2 y-3 y=4 \\
\Rightarrow & 10-5 y=4 \\
\Rightarrow & 5 y=4-10 \\
\Rightarrow & 5 y=-6 \\
\Rightarrow & y=\frac{-6}{-5}=\frac{6}{5}
\end{array}
$$

Substituting the value of y in equation (iii), we get
$x=5-\frac{6}{5}=\frac{25-6}{5}=\frac{19}{5}$
Hence, $x=\frac{19}{5}, y=\frac{6}{5}$.
4. Find the roots of quadratic equation $2 x^{2}-x+\frac{1}{8}=0$.

Ans. $\quad \Rightarrow 16 x^{2}-8 x+1=0$
Let us first split the middle term $-8 x$ as $-4 x-4 x . \quad$ [because $(-4 x) \times(-4 x)=16 x^{2}$]
So, $\quad 16 x^{2}-4 x-4 x+1=0$
$\Rightarrow \quad 4 x(4 x-1)-1(4 x-1)=0$
$(4 x-1)(4 x-1)=0$

Either $4 x-1=0 \quad$ or $4 x-1=0$
$\Rightarrow x=\frac{1}{4}$ or $x=\frac{1}{4}$
Hence, given equation have two repeated roots, one for each repeated factor.
5. In figure, $D E \| B C$. Find $E C$
$\left[2 \frac{1}{2}\right]$

Ans. In fig. (i), we have
$\mathrm{AD}=1.5 \mathrm{~cm}$
$\mathrm{DB}=3 \mathrm{~cm}$ and $\mathrm{AE}=1 \mathrm{~cm}$
DE || BC (Given)
$\frac{A D}{D B}=\frac{A E}{E C} \quad \quad$ (By Basic proportionality Theorem)
$\Rightarrow \frac{1.5}{3}=\frac{1}{E C}$
$\Rightarrow E C=\frac{3}{1.5}=2 \mathrm{~cm}$
6. If point (x, y) is equidistant from two points $(3,6)$ and $(-3,4)$, then find relation between x and y.

Ans. Three points $P(x, y), A(3,6)$ and $B(-3,4)$ are given points such that $\mathrm{PA}=\mathrm{PB}$
$\sqrt{(x-3)^{2}+(y-6)^{2}}=\sqrt{(x-3)^{2}+(y-4)^{2}}$
$\Rightarrow(x-3)^{2}+(y-6)^{2}=(x-3)^{2}+(y-4)^{2}$
$\Rightarrow\left(x^{2}-6 x+9\right)+\left(y^{2}-12 y+36\right)=\left(x^{2}+6 x+9\right)+\left(y^{2}-8 y+16\right)$
$\Rightarrow-6 x-12 y+45=6 x-8 y+25$
$\Rightarrow 12 x+4 y-20=0$
$\Rightarrow 3 x+y-5=0$
Which is the required relation.
7. If TP and TQ are two tangent lines of a circle with centre 0 and $\angle P O Q=110^{\circ}$ then find $\angle P T Q$.

Ans. From the figure, we have
$\angle P O Q=110^{\circ}$ and $\angle O P T=\angle O Q T=90^{\circ}$
Therefore, $\angle P O Q+\angle P T Q=180^{\circ}$
$\Rightarrow 110^{\circ}+\angle P T Q=180^{\circ}$
$\Rightarrow \angle P T Q=180^{\circ}-110^{\circ}=70^{\circ}$
Hence, $\angle P T Q=70^{\circ}$.
8. Draw a triangle ABC in which $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}, \angle B=60^{\circ}$. Then construct another triangle whose sides are $\frac{3}{4}$ of the corresponding sides of triangle $A B C$. $\left[2 \frac{1}{2}\right]$

Ans. Given a triangle ABc with side $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$, we are required to construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle ABC.

Steps of constructions:

(i) Draw a ray BQ making an acute angle with BC below the side of BC .

(ii) Mark 4 points (the greater of 3 and $4 \operatorname{in} \frac{3}{4}$) B_{1}, B_{2}, B_{3} and B_{4} on BQ , so that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$.
(iii) Join B_{4} to C.
(iv) Draw a line through B_{3} (the smaller of 3 and $4 \operatorname{in} \frac{3}{4}$) parallel to the line $B_{4} C$ to intersect BC at C^{\prime}.
(v) Draw a line through point C' parallel to the line AC to intersect BA at A'.

Hence $A^{\prime} B C^{\prime}$ is a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle A B C$.

Justification

$\triangle A B C-A^{\prime} B C^{\prime}$
(By AA similarity criteria)
Therefore, $\frac{B C^{\prime}}{B C}=\frac{B A^{\prime}}{B A}=\frac{A C^{\prime \prime}}{A C}$
But $\frac{B C^{\prime}}{B C}=\frac{3}{4}\left(\frac{B B_{3}}{B B_{4}}=\frac{B C^{\prime}}{B C}=\frac{3}{4}\right)$
So, $\quad \frac{B C^{\prime}}{B C}=\frac{B A \prime}{B A}=\frac{A \prime C^{\prime \prime}}{A C}=\frac{3}{4}$
9. A Box contains 5 red, 8 white and 4 green marbles. One marble is taken out of the box randomly. Find the probability that the marble taken out will be red.

Ans. Numbers of red marbles $=5$
Number of white marbles $=8$
Number of green marbles $=4$
Total number of marbles $=5+8+4=17$
\therefore Probability of getting red marble $=\frac{5}{17}$
10. A dice is thrown once. Find the probability of getting a prime number. [2 $\left.\frac{1}{2}\right]$

Ans. Coming possibilities $=(1,2,3,4,5,6)=6$
\therefore Probability of getting prime number $=\frac{3}{6}=\frac{1}{2}$

SECTION-B

11. Divide: $\left(x^{4}-5 x+6\right)$ by $\left(2-x^{2}\right)$.

Ans. First of all we write dividend and divisior in the standard form.
$p(x)=x^{4}-5 x+6, g(x)=-x^{2}+2$

$$
\begin{gathered}
- x ^ { 2 } + 2 \longdiv { x ^ { 4 } - 5 x + 6 } \\
\frac{-x^{2}-2 x^{2}}{\frac{x^{4}-5 x^{2}-5 x+6}{2 x^{2}+4}} \\
-\frac{2+}{-5 x+10}
\end{gathered}
$$

Now, we stop the process because degree of dividend (remainder) becomes less thean divisor.

Hence, quotient $=\left(-x^{2}+2\right)$
and remainder $=-5 x+10$.
12. Solve the pair of equation graphically.

$$
\begin{aligned}
& 2 x+y-6=0 \\
& 4 x-2 y-4=0
\end{aligned}
$$

Ans. Graphically representation
We have, $2 x+y-6=0$
$\Rightarrow \frac{-y+6}{2}$

x	3	2	1
y	0	2	4

and $4 x-2 y-4=0$
$\Rightarrow x=\frac{4+2 y}{4}$

x	1	2	-1
y	0	2	-4

From the graph, we find two intersecting lines. Therefore, the given equations has unique solution.

Hence $x=2, y=2$

Ans. Given

$$
n=22, d=7 \text { and } a_{22}=149
$$

We know that

$$
\begin{aligned}
& a_{n}=a+(n-1) d \\
\Rightarrow & a_{22}=a+(22-1) d(\because n=22) \\
\Rightarrow & 149=a+(22-1) \times 7 \\
\Rightarrow & 149=a+21 \times 7 \\
\Rightarrow & 149=a+147 \\
\Rightarrow & a=149-147=2
\end{aligned}
$$

We know that
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
So, $S_{22}=\frac{22}{2}[2(2)+(22-1) 7](\because n=22)$
$=11[4+21 \times 7]$
$=11 \times[4+147]$
$=11 \times 151=1661$
14. ABC is an equilateral triangle of side $2 a$. Find each of its altitudes.

Ans. Given
An equilateral triangle ABC of each side $2 a$.

Construction

$A D \perp B C$
In $\triangle A D B$ and $\triangle A D C$,
$A D=A D($ Common side $)$
$\angle A B D=\angle A C D$ (opposite anles of equal side)
$\angle A D B=\angle A D C\left(E a c h 90^{\circ}\right)$
Hence, $\triangle A D B \cong \triangle A D C$ (ASA congruency)

$$
\Rightarrow B D=C D=\frac{1}{2} B C=a
$$

Now, from right $\triangle A B D$ by Pythagoras
Therorem we get

$$
\begin{aligned}
& A B^{2}=A D^{2}+B D^{2} \\
\Rightarrow \quad & (2 a)^{2}=A D^{2}+a^{2} \\
\Rightarrow \quad & A D^{2}=4 a^{2}-a^{2}=3 a^{2} \Rightarrow \quad A D=\sqrt{3} a
\end{aligned}
$$

Hence, altitude of an equilateral $\triangle A B C=\sqrt{3} a$.
15. Prove that: $\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$.

Ans. L.H.S. $=\frac{1+\sec A}{\sec A}$

$$
\begin{aligned}
& =\frac{1+\frac{1}{\cos A}}{\frac{1}{\cos A}}=1+\cos A \\
& =\frac{(1+\cos A) \times(1-\cos A)}{1-\cos A}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(1)^{2}-(\cos A)^{2}}{1-\cos A} \\
& =\frac{1-\cos ^{2} A}{1-\cos A}=\frac{\sin ^{2} A}{1-\cos A}=\text { R.H.S. }
\end{aligned}
$$

$\therefore \quad$ L.H.S. $=$ R.H.S.
16. If $\tan A=\cot B$ then prove $A+B=90^{\circ}$.

Ans. We have

$$
\begin{aligned}
& \tan A=\cot B \\
\Rightarrow & \tan A=\tan \left(90^{\circ}-B\right) \\
\Rightarrow & A=90^{\circ}-B \\
\Rightarrow & A+B=90^{\circ}
\end{aligned}(\because \tan (90-\theta)=\cot \theta)
$$

Hence, we proved the result.
17. The length of the minute hand of a clock is 14 cm . Find the area swept by the minute hand in 5 mintues.

Ans. \quad Radius $=$ length of minute hand $=14 \mathrm{~cm}$
The angle covered by minute hand in 60 minutes $=360^{\circ}$
The angle covered by minute hand in one minute $=\frac{360}{60}=6^{0}$.
Then angle covered by minute hand in five minutes $=6^{\circ} \times 5=30^{0}$
Therefore, the area swept by the minute hand in 5 minutes $=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{30^{0}}{360} \times \frac{22}{7} \times 14 \times 14$
$=\frac{154}{3} \mathrm{~cm}^{2}$.
18. AB and CD are respectively arcs of two concentric circles of radii 21 cm and 7 $\mathbf{c m}$ and centre 0 . If $\angle A O B=30^{\mathbf{0}}$. Find the area of shaded region.

Ans. Radius of smaller arc $C D\left(r_{1}\right)=7 \mathrm{~cm}$
Radius of bigger arc $\mathrm{AB}\left(r_{2}\right)=21 \mathrm{~cm}$
Therefore, the area of shaded portion = The area of sector OAB - the area of sector OCD

$$
\begin{aligned}
& =\left(\frac{\theta}{360} \pi r_{2}^{2}-\frac{\theta}{360} \pi r_{1}^{2}\right) \\
& =\frac{\theta}{360} \times \pi\left(r_{2}^{2}-r_{1}^{2}\right) \\
& =\frac{\theta}{360} \times \pi\left[(21)^{2}-(7)^{2}\right] \\
& =\frac{30^{0}}{360} \times \frac{22}{7} \times[441-49] \\
& =\frac{1}{12} \times \frac{22}{7} \times 392=\frac{308}{3} \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of shaded region $=\frac{308}{3} \mathrm{~cm}^{2}$
19. Find the value of k if the three points $(7,-2),(5,1)$ and $(3, k)$ are collinear. $\left[3 \frac{1}{2}\right]$

Ans. Let $A(7,-2), B(5,1), C(3, k)$ are the given points.

$$
\begin{aligned}
& x_{1}=7, x_{2}=5, x_{3}=3 \\
& y_{1}=-2, y_{2}=1, y=k
\end{aligned}
$$

If the points are collinear then the condition is

$$
\begin{aligned}
& =\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0 \\
& \Rightarrow \frac{1}{2}\{7(1-k)+5(k-2)+3(-2-1)=0 \\
& \Rightarrow \frac{1}{2}(7-7 k+5 k+10-6-3)=0 \\
& \Rightarrow \frac{1}{2}(8-2 k)=0 \\
& \Rightarrow 8-2 k=0 \\
& \Rightarrow-2 k=-8 \\
& \Rightarrow k=\frac{-8}{-2}=4
\end{aligned}
$$

Hence, $\mathrm{k}=4$
20. Find the co-ordinates of point A where $A B$ is diameter of circle whose centre is (2,-3) and co-ordinates of points B are (1,4).

Ans. Let the coordinates of the point A be (x, y).
We know that centre of circle is the mid point of the diameter.
Now $O(2,-3)$ is the mid-point of the diameter AB.
Here, the coordinates of A are (x, y) and B are (1,4).

$$
\begin{aligned}
& \Rightarrow \quad \frac{x+1}{2}=2 \\
& \Rightarrow x+1=4 \Rightarrow x=3
\end{aligned}
$$

and $\quad \frac{y+4}{2}=-3$
$\Rightarrow \quad y+4=-6$
$\Rightarrow \quad y=-10$
$\Rightarrow x=3$ and $y=-10$
Hence, the coordinates of A is $(3,-10)$.

SECTION-C

21. Sum of the areas of two squares is $\mathbf{4 6 8} \mathbf{m}^{2}$. If difference of their perimeters is $\mathbf{2 4} \mathbf{~ m}$ then find the sides of the two squares.

Ans. Let side of first square $=\mathrm{x}$ metre
Side of seond square $=y$ metre
So, area of first square $=x^{2} m^{2}$
Area of second square $=y^{2} m^{2}$
Therefore, perimetre of first square $=4 x$ metre
Perimetre of second square $=4 y$ metre
According to first condition,

$$
\begin{equation*}
x^{2}+y^{2}=468 \tag{i}
\end{equation*}
$$

According to second condition,
$4 x-4 y=24$

$$
\begin{array}{r}
\Rightarrow \quad x-y=6 \\
x=y+6 \tag{ii}
\end{array}
$$

Putting the value of x in (i), we get

$$
\begin{array}{ll}
& (y+6)^{2}+y^{2}=468 \\
\Rightarrow & y^{2}+36+12 y+y^{2}=468 \\
\Rightarrow & 2 y^{2}+12 y+36-468=0 \\
\Rightarrow & 2 y^{2}+12 y-432=0 \\
\Rightarrow & y^{2}+6 y-216=0 \tag{iii}
\end{array}
$$

Equation (iii) is a quadratic equation,
Here $\quad a=1, b=6, c=-216$

$$
\begin{aligned}
& D=b^{2}-4 a c \\
& =36-4 \times 1 \times-216 \\
& =36+864=900
\end{aligned}
$$

By using quadratic formula,

$$
\begin{aligned}
& y=\frac{-b \pm \sqrt{D}}{2 a} \\
& =\frac{-6 \pm \sqrt{900}}{2} \\
& =\frac{-6 \pm 30}{2}=\frac{24}{2}, \frac{-36}{2}
\end{aligned}
$$

$$
y=12,-18
$$

Because side can not be negative,
So, $y=12$.
Put the value of y in equation (ii), we get $x=6+12=18$
So, side of first square $=18$ metre
and side of second square $=12$ metre.
22. In a triangle, if square of one side is equal to the sum of the square of the other two sides, then the angle opposite the first side is a right angle. Prove it.

Ans. Given

CAREER ACADEMY,NAHAN
$\mathrm{A} \triangle A B C$ such that $A B^{2}+B C^{2}=A C^{2}$
To prove
$\angle B=90^{\circ}$
Consruction

We construct a $\triangle P Q R$ right angled at Q such that $\mathrm{PQ}=\mathrm{AB}$ and $\mathrm{QR}=\mathrm{BC}$

Proof

In right $\triangle P Q R$, we have
$P R^{2}=P Q^{2}+Q R^{2}$ (By Pythagoras Theorem)
Or $P R^{2}=A B^{2}+B C^{2}$

$$
\begin{equation*}
(\because P Q=A B \text { and } Q R=B C) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\text { But } A C^{2}=A B^{2}+B C^{2} \quad \text { (Given) } \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get

$$
\begin{gathered}
P R^{2}=A C^{2} \\
\Rightarrow \quad P R=A C \text { or } \triangle A B C \cong \triangle P Q R
\end{gathered}
$$

(SSS congruency)
$\Rightarrow \angle B=\angle Q=90^{\circ}$
(Corresponding angles of similar triangles are equal)
Hence, $\angle B=90^{\circ}$
Hence, we proved the result. This is the converse of the Pythagoras Theorem.
23. The angle of elevation of the top of a building from the foot of the tower is 30^{0} and the angle of elevation of the top of tower from foot of building is 60°. If the tower is 50 m high then find the height of the building.

Ans. Let height of the building $=\mathrm{h} \mathrm{m}$

Height of the tower $=50 \mathrm{~m}$
The angle of elevation of the top of a building from the foot of the tower $=30^{\circ}$
The angle of elevation of the top of the tower from the foot of building $=60^{\circ}$

In right $\triangle A Q B$,

$$
\begin{align*}
& \frac{h}{B Q}=\tan 30^{\circ} \\
\Rightarrow \quad & \frac{h}{B Q}=\frac{1}{\sqrt{3}} \\
\Rightarrow \quad & B Q=h \sqrt{3} \tag{i}
\end{align*}
$$

In right $\triangle P B Q$

$$
\begin{aligned}
& \frac{50}{B Q}=\tan 60^{\circ} \\
\Rightarrow \quad & \frac{50}{B Q}=\sqrt{3} \\
\Rightarrow & B Q=\frac{50}{\sqrt{3}}
\end{aligned}
$$

Form equation (i) and (ii), we get

$$
\begin{aligned}
& h \sqrt{3}=\frac{50}{\sqrt{3}} \\
\Rightarrow \quad & h=\frac{50}{3} \\
\Rightarrow \quad & h=16 \frac{2}{3} \mathrm{~m}
\end{aligned}
$$

Hence, the height of tower $==16 \frac{2}{3} \mathrm{~m}$.
24. A solid iron pole consists of a cylinder of height 220 cm and base diameter $\mathbf{2 4} \mathbf{~ c m}$. Which is surmounted by another cylinder of height 60 cm and base radius 8 cm . Find the mass of the pole given that $1 \mathrm{~cm}^{3}=8 \mathrm{gm}(\pi=3.14)$

Ans. Given
Height of larger cylinder $\left(h_{1}\right)=220 \mathrm{~cm}$
Height of smaller cylinder $\left(h_{2}\right)=60 \mathrm{~cm}$

Radius of larger cylinder $\left(r_{1}\right)=\frac{24}{2} \mathrm{~cm}$
Radius of smaller cylinder $\left(r_{2}\right)=8 \mathrm{~cm}$
We know that
Volume of larger cylinder $=\pi r^{2}{ }_{1} h_{1}$.
$=\pi \times \frac{24}{2} \times \frac{24}{2} \times 220$
$=\pi \times 144 \times 220 \mathrm{~cm}^{3}$
and volume of smaller cylinder
$=\pi r_{2}{ }^{2}{ }_{h 2}$
$=\pi \times(8)^{2} \times 60$
$=\pi \times 64 \times 60 \mathrm{~cm}^{2}$
Therefore, total volume of pole $=$ Volume of larger cylinder + Volume of smaller cylinder
$=\pi \times 144 \times 220+\pi \times 60 \times 64$
$=\pi(144 \times 220+64 \times 60)$
$=\pi(31680+3840)=35520 \pi \mathrm{~cm}^{3}$
Mass of the pole (at the rate of 8 gm per $1 \mathrm{~cm}^{3}$) $=$ Volume \times Density
$=35520 \times 3.14 \times 8 g$
$=\frac{35520 \times 314 \times 8}{1000 \times 100} \mathrm{~kg}$
$=\frac{8922624}{10000}=892.260 \mathrm{~kg}$
25. The following table gives the literacy rate (in \%) of 35 cities. Find the mean literacy rate.

Literacy rate (\%)	$45-55$	$55-65$	$65-75$	$75-85$	$85-95$
No. of cities	3	10	11	8	3

Ans.

Literacy rate (in \%)	Number of cities $\left(\boldsymbol{f}_{\boldsymbol{i}}\right)$	Class mark $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{u}_{\boldsymbol{i}}=\frac{\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{7 0}}{\mathbf{1 0}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}$
$45-55$	3	50	-2	-6
$55-65$	10	60	-1	-10
$65-75$	11	$70=\mathrm{a}$	$=0$	0
$75-85$	8	80	$=1$	8
$85-95$	3	90	$=2$	6

		$\sum f_{i}=35$			$\sum f_{i} u_{i}=-2$

Here, we have $a=70, h=10 \sum f_{i}=35$ and $\sum f_{i} u_{i}=-2$
Using step-deviation method,
Mean $=a+\frac{\sum f_{i} u_{i}}{\sum f_{i}} \times h$
$=70+\frac{(-2)}{35} \times 10$
$=70-\frac{4}{7}$
$=70-0.57$
$=69.43 \%$
Hence, the mean literacy rate $=69.43 \%$.

