SECTION-A

1. Find HCF of $\mathbf{1 9 6}$ and $\mathbf{3 8 2 2 0}$ using Euclid's divisionAlgorithm.

Ans. $38220>196$, we apply the division lemma to 38220 and 196 , to get
$38220=196 \times 195+0$
The remainder now becomes zero, so our procedure stops.
Since the divisor at this stage is 196. So the HCF of 38220 and 196 is 196.
2. If $\operatorname{HCF}(306,657)=9$ then find the $\operatorname{LCM}(306,657)$.

Ans. We know that
$\operatorname{LCM}(a, b) \times \operatorname{HCF}(a, b)=a \times b$
$\Rightarrow \operatorname{LCM}(a, b)=\frac{a \times b}{H C F(a, b)}$
$\Rightarrow \operatorname{LCM}(306,657)=\frac{306 \times 657}{9}$
$\Rightarrow \operatorname{LCM}(306,657)=22338$.
3. Solve the following pair of Linear equation

$$
\begin{aligned}
& s-t=3 \\
& s / 3+t / 2=6
\end{aligned}
$$

Ans. Given pair of linear equations

$$
\begin{align*}
& s-t=3 \tag{i}\\
& \frac{s}{3}-\frac{t}{2}=6 \tag{ii}
\end{align*}
$$

From equation (i), we get
$s=t+3$
Substituting this value s in equation (ii), we get
$\frac{t+3}{3}+\frac{t}{2}=6$
$\Rightarrow 2(t+3)+3 t=36$
$\Rightarrow 5 t+6=36 \Rightarrow t=6$.

Substituting the value t in equation (iii), we get

$$
s+6+3=9
$$

Hence,

$$
s=9, t=6
$$

4. Find the roots of quadratic $6 x^{2}-x-2=0$.

Ans. $\quad 6 x^{2}-x-2=0$
By spitting the middle term $-x$ as $-4 x+3 x$.
$6 x^{2}-4 x+3 x-2=0$
$2 x(3 x-2)+1(3 x-2)=0$
$(3 x-2)(2 x+1)=0$
$3 x-2=0$
$2 x+1=0$
$3 x=2$
$2 x=-1$
$x=\frac{2}{3}$
$x=\frac{-1}{2}$
5. A ladder is placed against a wall such that its foot is at a distance of 2.5 m from the wall and its top reaches a window 6 mabove the ground. Find the height (length) of the ladder.

Ans. Let's assume that AB is a ladder and CA is a wall. The window is on a point A .

In figure, $B C=2.5 \mathrm{~m}, \mathrm{CA}=6 \mathrm{~m}$
In right $\triangle A B C$,

$$
\begin{aligned}
& A B^{2}=B C^{2}+C A^{2} \\
& A B^{2}=(2.5)^{2}+(6)^{2}
\end{aligned}
$$

$A B^{2}=6.25+36=42.25$.
$\Rightarrow A B=6.5 \mathrm{~m}$
Hence, length of the ladder $=6.5 \mathrm{~m}$
6. Find the point on x-axis which is equidistant from $(2,-5)$ and $(-2,9)$. $\left[2 \frac{1}{2}\right]$

Ans. Let the coordinates of $A(2,-5)$ and $B(-2,9)$ are given points.
and $P(x, 0)$ be the required point on the x-axis such that
$P A=P B$

$$
\begin{aligned}
P A= & \sqrt{(2-x)^{2}+(-5-0)^{2}} \\
& =\sqrt{4+x^{2}-4 x+25} \\
& =\sqrt{x^{2}-4 x+29}
\end{aligned}
$$

and $P B=\sqrt{(-2-x)^{2}+(9-0)^{2}}$

$$
\begin{aligned}
& =\sqrt{4+x^{2}+4 x+81} \\
& =\sqrt{x^{2}+4 x+85}
\end{aligned}
$$

It is given that $\mathrm{PA}=\mathrm{PB}$

$$
\begin{array}{ll}
\Rightarrow & \sqrt{x^{2}-4 x+29}=\sqrt{x^{2}+4 x+85} \\
\Rightarrow & x^{2}-4 x+29=x^{2}+4 x+85 \\
\Rightarrow & -4 x+29=4 x+85 \\
\Rightarrow & -4 x-4 x=85-29 \\
\Rightarrow & -8 x=56 \\
\Rightarrow & x=-7
\end{array}
$$

Hence, point on $x-$ axis $=-7$
Therefore, the point equidistant from the given points is $(-7,0)$.
7. If tangents PA and PB from a point \mathbf{P} to a circle with centre \mathbf{O} are inclined to each other at angle 80°, then find the value of $\angle P O A$.

Ans. From the fig., we have
$\triangle A O P \cong \triangle O B P$

$\Rightarrow \angle P O A=\angle P O B=\frac{1}{2} \angle A O B$
We know that

$$
\begin{align*}
& \angle A O B+\angle A P B=180^{\circ} \\
& \Rightarrow \angle A O B+80^{\circ}=180^{\circ} \\
& \Rightarrow \angle A O B=180^{\circ}-80^{\circ}=100^{\circ} \tag{ii}
\end{align*}
$$

From (i) and (ii), we get.,

$$
\angle P O A=\frac{1}{2} \times 100=50^{\circ}
$$

Hence, $\angle P O A=50^{\circ}$.
8. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}, 7 \mathrm{~cm}$ amd then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of first triangle.

Ans. We are given the sides of triangle $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and we are required to construct another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of first triangle.

Steps of construction:

(i) Construct a triangle ABC in which $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{CA}=7 \mathrm{~cm}$.
(ii) Draw any ray BQ making an acute angle with BC on the side opposite to the vertex A.

(iii) Marks 7 points (the greater of 7 and 5 in 7/5) $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ and B_{7} So that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}=B_{4} B_{5}=B_{5} B_{6}=B_{6} B_{7}$.
(iv) Join $B_{5} C$.
(v) Through B_{7}, draw $B_{7} C^{\prime} \| B_{5} C$ to intersect BC at C^{\prime}.
(vi) Through C^{\prime}, draw $C^{\prime} A^{\prime}| | C A$ to intersect BA at A^{\prime} Now $\triangle A^{\prime} B C^{\prime}$ is the required triangle whose sides are $7 / 5$ times the corresponding sides of the $\triangle A B C$.

Justification
$\triangle A B C \sim A^{\prime} B C^{\prime}$
(By AA similarity criteria)
Therefore, $\frac{B A^{\prime}}{B A}=\frac{B C^{\prime}}{B C}=\frac{A^{\prime} C^{\prime}}{A C}$
But $\frac{B C^{\prime}}{B C}=\frac{7}{5}\left(\because \frac{B B_{7}}{B B_{5}}=\frac{B C^{\prime}}{B C}=\frac{7}{5}\right)$
So, $\frac{B A^{\prime}}{B A}=\frac{B C^{\prime}}{B C}=\frac{A^{\prime} C^{\prime}}{A C}=\frac{7}{5}$
9. Gopi buys a fish from a shop. If there are 5 male and 8 female fishes in the tank what will be probability of a fish taken out randomly to be a male fish?

Ans. Number of male fish $=5$
Number of female fish $=8$
Then total number of fishes in the tank $=5+8=13$
\therefore Probability of getting a male fish $=\frac{\text { possible outcomes }}{\text { Total outcomes }}=\frac{5}{13}$.
10. One card is drawn from a well shuffled deck of 52 cards. Find the probability of getting a king of red colour.

Ans. There are two red kings, (one each of diamond and heart)
So, number of favourable outsomes $=2$
\therefore Probability off getting king of red colour $=\frac{2}{52}=\frac{1}{26}$

SECTION-B

11. Divide $\left(3 x^{4}+5 x^{3}-7 x^{2}+2 x+2\right)$ by $\left(x^{2}+3 x+1\right)$.

Ans. Here, dividend and divisor are in the standard form.

$$
\left.\begin{array}{r}
\frac{3 x^{2}-4 x+2}{x ^ { 2 } + 3 x + 1 \longdiv { 3 x ^ { 4 } + 5 x ^ { 3 } - 7 x ^ { 2 } + 2 x + 2 }} \begin{array}{r}
3 x^{4}+9 x^{3}+3 x^{2}
\end{array} \\
-\quad-\quad- \\
-4 x^{3}-10 x^{2}+2 x+2 \\
-4 x^{3}-12 x^{2}-4 x \\
+\quad+\quad+ \\
2 x^{2}+6 x+2 \\
-2 x^{2}+6 x+2
\end{array}\right)
$$

Since, remainder is zero, hence $x^{2}+3 x+1$ is a factor of $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$.
12. Solve the pair of equations graphically:

$$
\begin{aligned}
& x+3 y=6 \\
& 2 x-3 y=12
\end{aligned}
$$

Ans. Graphically representation:
From equation (i), we get

x	6	3	0
y	0	1	2

$$
x+6-3 y
$$

From equation (ii), we get
$2 x-3 y=12$
$\Rightarrow \quad x=\frac{12+3 y}{2}$

x	6	3	0
y	0	-2	-4

From the graph we find that lines are intersecting lines and have unique solution.
Hence, $x=6, y=0$.
13. How many multiples of 4 lie between 10 and 250 ?

Ans. The multiples of 4 between 10 and 250 are 12, 16, 20, 24
So, the above sequence from an A.P.
Let these number $=\mathrm{n}$.
$a_{1}=12$,

$$
\begin{aligned}
& d=a_{2}-a_{1} \\
& =16-12=4 \\
& a_{n}=248
\end{aligned}
$$

We know that

$$
\begin{aligned}
& a_{n}=a+(n-1) d \\
\Rightarrow & 248=12+(n-1) 4 \\
\Rightarrow & 248=12+4 n-4 \\
\Rightarrow & 4 n=248-8 \\
\Rightarrow & n=\frac{240}{4} \\
\Rightarrow & n=60
\end{aligned}
$$

Hence, there are 60 terms lies multiple of 4 betwene 10 and 250.
14. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of ladder from base of wall.

Ans. Length of the ladder $=10 \mathrm{~m}$
The height between a window and ground $=8 \mathrm{~m}$

Let's assume the distance between foot of the ladder and base of the ball $=x m$

In right $\triangle A B C$,

$$
(A B)^{2}=(B C)^{2}+(A C)^{2} \quad(\text { Pythagoras Theorem })
$$

$\Rightarrow(10)^{2}=(8)^{2}+(x)^{2}$
$\Rightarrow(x)^{2}=(10)^{2}-(8)^{2}$
$\Rightarrow x^{2}=100-64=36$
$\Rightarrow x=6$
Hence, the distance between foot of the ladder and base of the wall $=6 \mathrm{~m}$
15. Prove that : $(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$.

Ans. L.H.S $=(\operatorname{cosec} \theta-\cot \theta)^{2}$

$$
\begin{array}{ll}
=\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2}=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2} & \\
=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}=\frac{\left(1-\cos ^{2}\right)^{2}}{1-\cos ^{2} \theta} & \quad\left[\therefore \sin ^{2} \theta=1-\cos ^{2} \theta\right] \\
=\frac{(1-\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}} & \\
=\frac{(1-\cos \theta)(1-\cos \theta)}{(1-\cos \theta)(1+\cos \theta)} & \quad\left[\therefore a^{2}-b^{2}=[(a-b)(a+b)]\right. \\
=\frac{1-\cos \theta}{1+\cos \theta}=\text { R.H.S. } \\
\therefore \text { L.H.S }=\text { R.H.S. }
\end{array}
$$

16. Prove that: $\tan 48^{0} \tan 23^{0}$ tan $42^{0} \tan 67^{0}=1$.

Ans. L.H.S. $=\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}$
$\Rightarrow \tan 48^{\circ} \tan 23^{\circ} \tan \left(90^{\circ}-48^{\circ}\right) \tan \left(90^{\circ}-23^{\circ}\right)$
$\Rightarrow \tan 48^{\circ} \tan 23^{\circ} \cot 48^{\circ} \cot 23^{\circ}$
$\Rightarrow \tan 48^{\circ} \tan 23^{\circ} \cot 48^{\circ} \cot 23^{\circ}$
$\Rightarrow \tan 48^{\circ} \tan 23^{\circ} \frac{1}{\tan 48^{\circ}} \frac{1}{\tan 23^{\circ}}=1$
Hence, L.H.S = R.H.S.
17. Find the area of a sector of a circle with radius $6 \mathbf{c m}$. If angle of the sector is 60^{0}.

Ans. Radius of a circle (r) $=6 \mathrm{~cm}$
Angle of the sector $(\theta)=60^{\circ}$
Area of the sector $=\frac{\theta}{360} \times \pi r^{2}$

$$
=\frac{60}{360} \times \pi \times 6 \times 6=\frac{132}{7} \mathrm{~cm}^{2}
$$

18. $O A C B$ is a quadrant of a circle with centre 0 and radius 3.5 cm . If $O D=2 \mathrm{~cm}$ then find the area of quadrant and area of shaded region.

Ans. The radius of a quadrant OACB 3.5 cm and $\mathrm{OD}=2 \mathrm{~cm}$
The area of the quadrant OACB

$$
\begin{aligned}
= & \frac{1}{4} \times \pi r^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times\left(\frac{7}{2}\right)^{2} \mathrm{~cm}^{2} \\
= & \frac{1}{4} \times \frac{22}{7} \times \frac{49}{4} \mathrm{~cm}^{2} \\
= & \frac{11 \times 7}{8} \mathrm{~cm}^{2} \\
= & \frac{77}{8} \mathrm{~cm}^{2}
\end{aligned}
$$

Here, $O B=\frac{7}{2} \mathrm{~cm}$ and $O D=2 \mathrm{~cm}$
The area of $\triangle O B D=\frac{1}{2} O B \times O D$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{7}{2} \times 2 \mathrm{~cm}^{2} \\
& =\frac{7}{2} \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the shaded region = The area of quadrant OACB - The area of a $\triangle O B D=\frac{77}{8} \mathrm{~cm}^{2}-\frac{7}{2} \mathrm{~cm}^{2}$

$$
=\frac{77-28}{8} \mathrm{~cm}^{2}=\frac{49}{8} \mathrm{~cm}^{2} .
$$

19. Find the area of a triangle whose vertices are $(-5,-1),(3,-5)$ and $(5,2)$.

Ans. Let vertices of a given triangle ABC are $A(-5,-1), B(3,-5)$ and $C(5,2)$.
Here, $x_{1}=5$ and $y_{1}=-1$

$$
\begin{aligned}
& x_{2}=3 \text { and } y_{2}=-5 \\
& x_{3}=5 \text { and } y_{3}=2
\end{aligned}
$$

We Know that area of $\triangle A B C=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[-5(-5-2)+3(2-(-1))+5(-1-(-5))]$
$=\frac{1}{2}[-5 \times-7+3 \times 3+5 \times 4]$
$=\frac{1}{2}[35+9+20]$
$=\frac{1}{2} \times 64=32$ square unit.
20. Find the co-ordinates of the points which divides the line segment joining $A(-2,2)$ and $B(2,8)$ into four equal parts.

Ans. Let the points P, Q and R divides the line segment $A(-2,2)$ and $B(2,8)$ into four equal parts.

$\therefore \quad A P=P Q=Q R=R B$
Now Q is mid point of AB .

By mid-point formula the co-ordinates of the point Q are $\left(\frac{-2+2}{2}, \frac{2+8}{2}\right)=(0.5)$
R is mid-point of $Q B$.
Then the coordinates of R are $\left(\frac{0+2}{2}, \frac{5+8}{2}\right)=\left(1, \frac{13}{2}\right)$
P is mid-point of $A Q$.
Then, the coordinates of P are
$\left(\frac{-2+0}{2}, \frac{2+5}{2}\right)=\left(-1, \frac{7}{2}\right)$
Hence, the required points are $P\left(-1, \frac{7}{2}\right), Q(0,5)$ and $R\left(1, \frac{13}{2}\right)$.

SECTION-C

21. An express train takes one hour less than a passenger train to travel 132 m between Mysore and Bangalore. If speed of express train is $11 \mathrm{~km} / \mathrm{h}$ more than the passenger train then find the average speed of both trains.

Ans. Let the average speed of the passenger train $=x \mathrm{~km} / \mathrm{h}$
And the average speed of the express train $=y \mathrm{~km} / \mathrm{h}$
Distance between mysore and Banagalore $=132 \mathrm{~km}$.
Time taken by passenger train to travel a distance $132 \mathrm{~km}=\frac{132}{x} \mathrm{hrs}$.
Time taken by express train to travel a distance $132 \mathrm{~km}=\frac{132}{x+11} \mathrm{hrs}$.
According to question, $\frac{132}{x}-\frac{132}{x+11}=1$
$\Rightarrow 132\left[\frac{1}{x}-\frac{1}{x+11}\right]=1$
$\Rightarrow 132\left[\frac{x+11-x}{x(x+11)}\right]=1$
$\Rightarrow \quad \frac{11}{x^{2}+11 x}=\frac{1}{132}$
$\Rightarrow x^{2}+11 x=11 \times 132$
$\Rightarrow x^{2}+11 x-1452=0$
which is a quadratic equation in x variable
Here, $a=1, b=11, c=-1452$
$D=b^{2}-4 a c$

$$
\begin{aligned}
& =(11)^{2}-4 \times 1 \times(-1452) \\
& =121+5808=5929
\end{aligned}
$$

Now, $x=\frac{-b \pm \sqrt{D}}{2 a}$
$=\frac{-11 \pm \sqrt{5929}}{2 \times 1}$
$=\frac{-11 \pm 77}{2}$
$=\frac{66}{2}, \frac{-88}{2}$
$=33,-44$
But speed of the train can't be negative.
So, $x=33$
Hence, average speed of the passengers train $=33 \mathrm{~km} / \mathrm{h}$
And average speed of the express train $=(33+1) \mathrm{km}$

$$
=44 \mathrm{~km} / \mathrm{h}
$$

22. In a right triangle, the square of the hypotenuse is kequal to the sum of the squares of the other two sides.

Ans. Given
A right angled $\triangle A B C$ which is right angled at B.
To prove
$A C^{2}=A B^{2}+B C^{2}$
Construction
We draw, $B D \perp A C$

Proof

$\triangle A D B \sim \triangle A B C$
(\therefore Perpendicular is drawn from the vertex of the right angle of right triangle to the hypotenuse then triangle on both side of the perpendicular are similar to whole triangle)
$\Rightarrow \frac{A D}{A B}=\frac{A B}{A C} \quad[\because$ sides are proportional $]$
Or $A B \times A B=A D \times A C$

Or $A B^{2}=A D \times A C$
Also, $\triangle C D B \sim \triangle C B A$
Therefore, $\frac{C D}{B C}=\frac{B C}{C A} \quad[\because$ sides are proportional $]$
Or $B C \times B C=C D \times C A$
Or $B C^{2}=C D \times C A$
Now, adding (i) and (ii), we get

$$
\begin{aligned}
A B^{2}=B C^{2}= & A D \times A C+C D \times A C \\
& =A C[A D+C D] \\
& =A C \times A C=A C^{2} .
\end{aligned}
$$

23. As observed from 75 m high light house from the sea level, the angle of depression of two ships are 30^{0} and 45°. If one ship is exactly behind the other on the same side of the lighthouse find the distance between the two ships.

Ans. Let the distance between the ships $=x \mathrm{~m}$
Height of the light house $(A B)=75 \mathrm{~m}$,
D and C are the positions of two ships.
$\angle A D B=30^{\circ}$
(Given)
$\angle A C B=45^{\circ}$
(Given)

In right $\triangle A D B$,

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{A B}{D B} \\
\Rightarrow \quad & \frac{1}{\sqrt{3}}=\frac{75}{D B}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad D B=(75 \times \sqrt{3}) \tag{i}
\end{equation*}
$$

In right $\triangle A B C$,

$$
\begin{align*}
& \tan 45^{\circ}=\frac{A B}{B C} \\
\Rightarrow \quad & 1=\frac{75}{B C} \\
\Rightarrow \quad & B C=75 \mathrm{~m} \tag{ii}
\end{align*}
$$

Now the distance between the ships
$x=D B-B C=75 \sqrt{3}-75=75(\sqrt{3}-1) m$.
24. How many silver coins, 1.75 cm in diameter and thickness of $\mathbf{2 ~ m m}$ must be melted to form a cuboid of dimensions of $5.5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 3.5 \mathrm{~cm}$?

Ans. Given
Diameter of the silver coin $=1.75 \mathrm{~cm}$
Radius of the silver coin (r) $=\frac{1.75}{2} \mathrm{~cm}$
Thickness of the silver coin $=2 \mathrm{~mm}$

$$
=0.2 \mathrm{~cm}
$$

Dimensions of cuboid $=5.5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 3.5 \mathrm{~cm}$
Let the numbers of coin $=n$
We know that
Volume of n coins $=$ Volume of the cuboid

$$
\begin{aligned}
& n \times \pi r^{2} h=l \times b \times h \\
& \Rightarrow n \frac{22}{7} \times\left(\frac{1.75}{2}\right)^{2} \times(0.2)=5.5 \times 10 \times 3.5 \\
& \Rightarrow n \times \frac{22}{7} \times \frac{7}{7} \times \frac{7}{8} \times 2=55 \times 35 \\
& \Rightarrow n=\frac{55 \times 35 \times 16}{7 \times 11} \\
& \Rightarrow n=5 \times 5 \times 16=400 .
\end{aligned}
$$

The number of coins $=400$.
25. The distribution below gives the weights of $\mathbf{3 0}$ students of a class. Find the median weight of the students.

	Weight (in kg)	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$
	Number of students	2	3	8	6	6	3

Ans.

Weight (in kg)	No. of student $\left(\boldsymbol{f}_{\mathbf{1}}\right)$	Cumulative frequency $(\boldsymbol{c} . \boldsymbol{f})$.
$40-45$	2	2
$45-50$	3	$2+3=5$
$50-55$	8	$5+8=13$
$55-60$	6	$13+6=19$
$60-65$	6	$19+6=25$
$65-70$	3	$25+3=28$
$70-75$	2	$28+2=30$

Here, we have, $\mathrm{n}=30$
So, $\frac{n}{2}=15$, therefore the median class is $55-60$.
Here $l=55, n=30, f=6, c . f .=13$ and $h=5$
Using the formula of median,
Median $=l+\left[\frac{\frac{n}{2}-c . f .}{f}\right] \times h$

$$
=55+\left[\frac{15-13}{6}\right] \times 5=55+\frac{5}{3}=55+1.67=56.67 \mathrm{~kg}
$$

Hence, median weight of the students $=56.67 \mathrm{~kg}$.

