$\Rightarrow 2(t+3) + 3t = 36$

 $\Rightarrow 5t + 6 = 36 \Rightarrow t = 6.$

SERIES-B MATHEMATICS

SECTION-A $\left[2\frac{1}{2}\right]$ 1. Find HCF of 196 and 38220 using Euclid's divisionAlgorithm. 38220 > 196, we apply the division lemma to 38220 and 196, to get Ans. $38220 = 196 \times 195 + 0$ The remainder now becomes zero, so our procedure stops. Since the divisor at this stage is 196. So the HCF of 38220 and 196 is 196. $\left[2\frac{1}{2}\right]$ 2. If HCF (306, 657) = 9 then find the LCM (306, 657). We know that Ans. $LCM(a,b) \times HCF(a,b) = a \times b$ \implies LCM $(a, b) = \frac{a \times b}{HCF(a, b)}$ \implies LCM (306,657) = $\frac{306 \times 657}{9}$ \Rightarrow *LCM*(306,657) = 22338. $\left[2\frac{1}{2}\right]$ 3. Solve the following pair of Linear equation s - t = 3 $\frac{s}{3} + \frac{t}{2} = 6$ Ans. Given pair of linear equations s - t = 3.....(i) $\frac{s}{3} - \frac{t}{2} = 6$(ii) From equation (i), we get s = t + 3.....(iii) Substituting this value s in equation (ii), we get $\frac{t+3}{3} + \frac{t}{2} = 6$

 $\left[2\frac{1}{2}\right]$

Substituting the value t in equation (iii), we get

s + 6 + 3 = 9

Hence, s = 9, t = 6.

- 4. Find the roots of quadratic $6x^2 x 2 = 0$.
- Ans. $6x^2 x 2 = 0$

By spitting the middle term -x as -4x + 3x.

- 5. A ladder is placed against a wall such that its foot is at a distance of 2.5 m from the wall and its top reaches a window 6 mabove the ground. Find the height (length) of the ladder. $\left[2\frac{1}{2}\right]$
- Ans. Let's assume that AB is a ladder and CA is a wall. The window is on a point A.

In figure, BC = 2.5 m, CA = 6 m

In right $\triangle ABC$,

$$AB^2 = BC^2 + CA^2$$

 $AB^2 = (2.5)^2 + (6)^2$

 $AB^2 = 6.25 + 36 = 42.25.$

 $\Rightarrow AB = 6.5 m$

Hence, length of the ladder = 6.5m

6. Find the point on x – axis which is equidistant from (2, -5) and (-2, 9). $\left[2\frac{1}{2}\right]$

Ans. Let the coordinates of A(2, -5) and B(-2, 9) are given points.

and P(x, 0) be the required point on the x –axis such that

PA = PB $PA = \sqrt{(2 - x)^2 + (-5 - 0)^2}$ $= \sqrt{4 + x^2 - 4x + 25}$ $= \sqrt{x^2 - 4x + 29}$ and $PB = \sqrt{(-2 - x)^2 + (9 - 0)^2}$ $= \sqrt{4 + x^2 + 4x + 81}$ $= \sqrt{x^2 + 4x + 85}$

It is given that PA = PB

 $\Rightarrow \sqrt{x^2 - 4x + 29} = \sqrt{x^2 + 4x + 85}$ $\Rightarrow x^2 - 4x + 29 = x^2 + 4x + 85$ $\Rightarrow -4x + 29 = 4x + 85$ $\Rightarrow -4x - 4x = 85 - 29$ $\Rightarrow -8x = 56$ $\Rightarrow x = -7$

Hence, point on x - axis = -7

Therefore, the point equidistant from the given points is (-7, 0).

7. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle 80⁰, then find the value of $\angle POA$. $\left[2\frac{1}{2}\right]$

Ans. From the fig., we have

SERIES-B MATHEMATICS

$$\angle POA = \frac{1}{2} \times 100 = 50^{\circ}$$

Hence, $\angle POA = 50^{\circ}$.

- 8. Construct a triangle with sides 5 cm, 6 cm, 7 cm amd then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of first triangle. $\left[2\frac{1}{2}\right]$
- Ans. We are given the sides of triangle 5 cm, 6 cm and 7 cm and we are required to construct another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of first triangle.

Steps of construction:

(i) Construct a triangle ABC in which AB = 5 cm, BC = 6 cm and CA = 7 cm.

(ii) Draw any ray BQ making an acute angle with BC on the side opposite to the vertex A. A_{λ}^{\prime}

SERIES-B MATHEMATICS

(iii) Marks 7 points (the greater of 7 and 5 in 7/5) $B_1, B_2, B_3, B_4, B_5, B_6$ and B_7 So that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5 = B_5B_6 = B_6B_7$.

(iv) Join B_5C .

(v) Through B_7 , draw $B_7C'||B_5C$ to intersect BC at C'.

(vi) Through C', draw C'A'|| CA to intersect BA at A' Now $\Delta A'BC'$ is the required triangle whose sides are 7/5 times the corresponding sides of the ΔABC .

Justification

 $\Delta ABC \sim A'BC'$ (By AA similarity criteria)

Therefore, $\frac{BA'}{BA} = \frac{BC'}{BC} = \frac{A'C'}{AC}$

But $\frac{BC'}{BC} = \frac{7}{5} \left(\because \frac{BB_7}{BB_5} = \frac{BC'}{BC} = \frac{7}{5} \right)$ So, $\frac{BA'}{BC} = \frac{BC'}{BC} = \frac{A'C'}{BC} = \frac{7}{5}$

50,
$$\frac{BR}{BA} = \frac{BC}{BC} = \frac{RC}{AC} = \frac{7}{5}$$

- 9. Gopi buys a fish from a shop. If there are 5 male and 8 female fishes in the tank what will be probability of a fish taken out randomly to be a male fish? $\left[2\frac{1}{2}\right]$
- Ans. Number of male fish = 5

Number of female fish = 8

Then total number of fishes in the tank =5+8=13

:. Probability of getting a male fish = $\frac{\text{possible outcomes}}{\text{Total outcomes}} = \frac{5}{13}$

- 10. One card is drawn from a well shuffled deck of 52 cards. Find the probability of getting a king of red colour. $\left[2\frac{1}{2}\right]$
- Ans. There are two red kings, (one each of diamond and heart)

So, number of favourable outsomes = 2

: Probability off getting king of red colour $=\frac{2}{52}=\frac{1}{26}$

SECTION-B

11. Divide
$$(3x^4 + 5x^3 - 7x^2 + 2x + 2)$$
 by $(x^2 + 3x + 1)$. $[3\frac{1}{2}]$

Ans. Here, dividend and divisor are in the standard form.

Since, remainder is zero, hence $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^3 - 7x^2 + 2x + 2$.

12. Solve the pair of equations graphically:

x + 3y = 6

$$2x - 3y = 12$$

Ans. Graphically representation:

From equation (i), we get

x	6	3	0
у	0	1	2

x + 6 - 3y

 $\left[3\frac{1}{2}\right]$

 $|3\frac{1}{2}|$

From equation (ii), we get

2x - 3y = 12

 $\implies x = \frac{12+3y}{2} \qquad \qquad x = \frac{x}{2} \qquad \qquad x = \frac{$

From the graph we find that lines are intersecting lines and have unique solution.

Hence, x = 6, y = 0.

13. How many multiples of 4 lie between 10 and 250?

Ans. The multiples of 4 between 10 and 250 are 12, 16, 20, 24, 248.

So, the above sequence from an A.P.

Let these number = n.

 $a_1 = 12$,

$$d = a_2 - a_1 = 16 - 12 = 4$$

 $a_n = 248.$

We know that

 $a_n = a + (n - 1)d$ $\Rightarrow 248 = 12 + (n - 1)4$ $\Rightarrow 248 = 12 + 4n - 4$ $\Rightarrow 4n = 248 - 8$ $\Rightarrow n = \frac{240}{4}$ $\Rightarrow n = 60$

Hence, there are 60 terms lies multiple of 4 betwene 10 and 250.

14. A ladder 10 m long reaches a window 8m above the ground. Find the distance of the foot of ladder from base of wall. $\left[3\frac{1}{2}\right]$

Ans. Length of the ladder = 10 m

The height between a window and ground = 8 m

 $\left[3\frac{1}{2}\right]$

Let's assume the distance between foot of the ladder and base of the ball = xm

In right $\triangle ABC$,

 $(AB)^{2} = (BC)^{2} + (AC)^{2}$ (Pythagoras Theorem) $\Rightarrow (10)^{2} = (8)^{2} + (x)^{2}$ $\Rightarrow (x)^{2} = (10)^{2} - (8)^{2}$ $\Rightarrow x^{2} = 100 - 64 = 36$ $\Rightarrow x = 6$

Hence, the distance between foot of the ladder and base of the wall = 6m

15. Prove that :
$$(cosec \ \theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}$$
. $\left[3\frac{1}{2}\right]$

Ans. $L.H.S = (cosec \ \theta - \cot \theta)^2$

$$= \left(\frac{1}{\sin\theta} - \frac{\cos\theta}{\sin\theta}\right)^2 = \left(\frac{1-\cos\theta}{\sin\theta}\right)^2$$

$$= \frac{(1-\cos\theta)^2}{\sin^2\theta} = \frac{(1-\cos\theta)^2}{1-\cos^2\theta} \qquad [\because \sin^2\theta = 1 - \cos^2\theta]$$

$$= \frac{(1-\cos\theta)^2}{(1)^2 - (\cos\theta)^2}$$

$$= \frac{(1-\cos\theta)(1-\cos\theta)}{(1-\cos\theta)(1+\cos\theta)} \qquad [\because a^2 - b^2 = [(a-b)(a+b)]$$

$$= \frac{1-\cos\theta}{1+\cos\theta} = R.H.S.$$

$$\therefore L.H.S = R.H.S.$$

16. Prove that: $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ} = 1$.

Ans. $L.H.S. = \tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}$

- \Rightarrow tan 48° tan 23° tan (90° 48°) tan (90° 23°)
- \Rightarrow tan 48° tan 23° cot 48° cot 23°
- \Rightarrow tan 48° tan 23° cot 48° cot 23°

$$\Rightarrow \tan 48^{\circ} \tan 23^{\circ} \frac{1}{\tan 48^{\circ}} \frac{1}{\tan 23^{\circ}} = 1$$

Hence, L.H.S = R.H.S.

- 17. Find the area of a sector of a circle with radius 6 cm. If angle of the sector is 60^{0} . $\left[3\frac{1}{2}\right]$
- Ans. Radius of a circle (r) = 6 cm

Angle of the sector $(\theta) = 60^{\circ}$

Area of the sector = $\frac{\theta}{360} \times \pi r^2$

$$=\frac{60}{360} \times \pi \times 6 \times 6 = \frac{132}{7} cm^2.$$

18. OACB is a quadrant of a circle with centre O and radius 3.5 cm. If OD = 2 cm then find the area of quadrant and area of shaded region. $\left[3\frac{1}{2}\right]$

Ans. The radius of a quadrant OACB 3.5 cm and OD= 2 cm

The area of the quadrant OACB

$$= \frac{1}{4} \times \pi r^2$$
$$= \frac{1}{4} \times \frac{22}{7} \times \left(\frac{7}{2}\right)^2 cm^2$$
$$= \frac{1}{4} \times \frac{22}{7} \times \frac{49}{4} cm^2$$
$$= \frac{11 \times 7}{8} cm^2$$
$$= \frac{77}{8} cm^2$$

 ΔOBD is a right angled triangle

Here, $OB = \frac{7}{2} cm$ and OD = 2 cmThe area of $\triangle OBD = \frac{1}{2} OB \times OD$ $= \frac{1}{2} \times \frac{7}{2} \times 2 cm^{2}$ $= \frac{7}{2} cm^{2}$

Hence, the area of the shaded region = The area of quadrant OACB – The area of a $\Delta OBD = \frac{77}{8} cm^2 - \frac{7}{2} cm^2$ $= \frac{77-28}{8} cm^2 = \frac{49}{8} cm^2.$

19. Find the area of a triangle whose vertices are (-5, -1), (3, -5) and (5, 2). $\left[3\frac{1}{2}\right]$

Ans. Let vertices of a given triangle ABC are A(-5, -1), B(3, -5) and C(5, 2).

Here,
$$x_1 = 5 \text{ and } y_1 = -1$$

 $x_2 = 3 \text{ and } y_2 = -5$
 $x_3 = 5 \text{ and } y_3 = 2$

We Know that area of $\triangle ABC = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$

$$= \frac{1}{2} [-5(-5-2) + 3(2-(-1)) + 5(-1-(-5))]$$

$$= \frac{1}{2} [-5 \times -7 + 3 \times 3 + 5 \times 4]$$

$$= \frac{1}{2} [35 + 9 + 20]$$

$$= \frac{1}{2} \times 64 = 32 \text{ square unit.}$$

- 20. Find the co-ordinates of the points which divides the line segment joining A(-2, 2) and B (2, 8) into four equal parts. $\begin{bmatrix} 3\frac{1}{2} \end{bmatrix}$
- Ans. Let the points P, Q and R divides the line segment A(-2, 2) and B (2, 8) into four equal parts.

 $\therefore \quad AP = PQ = QR = RB$

Now Q is mid point of AB.

By mid-point formula the co-ordinates of the point Q are $\left(\frac{-2+2}{2}, \frac{2+8}{2}\right) = (0.5)$

R is mid-point of QB.

Then the coordinates of R are $\left(\frac{0+2}{2}, \frac{5+8}{2}\right) = \left(1, \frac{13}{2}\right)$

P is mid-point of AQ.

Then, the coordinates of P are

$$\left(\frac{-2+0}{2},\frac{2+5}{2}\right) = \left(-1,\frac{7}{2}\right)$$

Hence, the required points are $P\left(-1,\frac{7}{2}\right)$, Q(0, 5) and $R\left(1,\frac{13}{2}\right)$.

SECTION-C

- 21. An express train takes one hour less than a passenger train to travel 132 m between Mysore and Bangalore. If speed of express train is 11 km/h more than the passenger train then find the average speed of both trains. [5]
- Ans. Let the average speed of the passenger train = x km/h

And the average speed of the express train = y km/h

Distance between mysore and Banagalore = 132 km.

Time taken by passenger train to travel a distance 132 km = $\frac{132}{r}$ hrs.

Time taken by express train to travel a distance 132 km = $\frac{132}{r+11}$ hrs.

According to question,
$$\frac{132}{x} - \frac{132}{x+11} = 1$$

$$\Rightarrow 132 \left[\frac{1}{x} - \frac{1}{x+11}\right] = 1$$

$$\Rightarrow 132 \left[\frac{x+11-x}{x(x+11)} \right] = 1$$

$$\implies \quad \frac{11}{x^2 + 11x} = \frac{1}{132}$$

$$\Rightarrow x^2 + 11x = 11 \times 132$$

$$\implies x^2 + 11x - 1452 = 0$$

which is a quadratic equation in *x* variable

Here,
$$a = 1, b = 11, c = -1452$$

 $D = b^2 - 4ac$

 $= (11)^2 - 4 \times 1 \times (-1452)$ = 121 + 5808 = 5929Now, $x = \frac{-b \pm \sqrt{D}}{2a}$ $=\frac{-11\pm\sqrt{5929}}{2\times1}$ $=\frac{-11\pm77}{2}$ $=\frac{66}{2},\frac{-88}{2}$ = 33, -44

But speed of the train can't be negative.

So, x = 33

Hence, average speed of the passengers train = $33 \ km/h$

And average speed of the express train = (33 + 1) km

 $= 44 \, km/h$

- 22. In a right triangle, the square of the hypotenuse is kequal to the sum of the squares of the other two sides. [5]
- Ans. Given

A right angled $\triangle ABC$ which is right angled at B.

To prove

Proof

 $\Delta ADB \sim \Delta ABC$

(: Perpendicular is drawn from the vertex of the right angle of right triangle to the hypotenuse then triangle on both side of the perpendicular are similar to whole triangle)

 $\implies \frac{AD}{AB} = \frac{AB}{AC}$ [: sides are proportional]

 $Or AB \times AB = AD \times AC$

SERIES-B MATHEMATICS

Or $AB^2 = AD \times AC$ (i) Also, $\Delta CDB \sim \Delta CBA$ Therefore, $\frac{CD}{BC} = \frac{BC}{CA}$ [: sides are proportional] Or $BC \times BC = CD \times CA$ Or $BC^2 = CD \times CA$ (ii) Now, adding (i) and (ii), we get $AB^2 = BC^2 = AD \times AC + CD \times AC$ = AC[AD + CD] $= AC \times AC = AC^2$.

- As observed from 75 m high light house from the sea level, the angle of depression of two ships are 30⁰ and 45⁰. If one ship is exactly behind the other on the same side of the lighthouse find the distance between the two ships.
- Ans. Let the distance between the ships = x m

Height of the light house (AB) = 75 m,

D and C are the positions of two ships.

 $\angle ADB = 30^{\circ}$ (Given)

 $\angle ACB = 45^{\circ}$ (Given)

In right $\triangle ADB$,

$$\tan 30^0 = \frac{AB}{DB}$$
$$\implies \frac{1}{\sqrt{3}} = \frac{75}{DB}$$

\Rightarrow	$DB = (75 \times \sqrt{3})$	(i)		
In righ	ht ΔABC ,			
	$\tan 45^0 = \frac{AB}{BC}$			
\Rightarrow	$1 = \frac{75}{BC}$			
\Rightarrow	BC = 75m	(ii)		
Now the distance between the ships				

- $x = DB BC = 75\sqrt{3} 75 = 75(\sqrt{3} 1)m.$
- 24. How many silver coins, 1.75 cm in diameter and thickness of 2 mm must be melted to form a cuboid of dimensions of $5.5 \ cm \times 10 \ cm \times 3.5 \ cm$? [5]
- Ans. Given

Diameter of the silver coin = 1.75 cm

Radius of the silver coin (r) = $\frac{1.75}{2}$ cm

Thickness of the silver coin = 2 mm

= 0.2 cm

Dimensions of cuboid = $5.5 \ cm \times 10 \ cm \times 3.5 \ cm$

Let the numbers of coin = n

We know that

Volume of n coins = Volume of the cuboid

$$n \times \pi r^2 h = l \times b \times h$$

$$\implies n\frac{22}{7} \times \left(\frac{1.75}{2}\right)^2 \times (0.2) = 5.5 \times 10 \times 3.5$$

$$\implies n \times \frac{22}{7} \times \frac{7}{7} \times \frac{7}{8} \times 2 = 55 \times 35$$

$$\implies n = \frac{55 \times 35 \times 16}{7 \times 11}$$

$$\implies n = 5 \times 5 \times 16 = 400.$$

The number of coins = 400.

25. The distribution below gives the weights of 30 students of a class. Find the median weight of the students. [5]

ween the ships $-75 = 75(\sqrt{3} - 1)m$

SERIES-B MATHEMATICS

Weight (in kg)	40-45	45-50	50-55	55-60	60-65	65-70	70-75
Number of students	2	3	8	6	6	3	2

Ans.

Weight (in kg)	No. of student	Cumulative frequency		
	(f_1)	$(\boldsymbol{c},\boldsymbol{f}_{\cdot})$		
40-45	2	2		
45-50	3	2+3=5		
50-55	8	5+8=13		
55-60	6	13+6=19		
60-65	6	19+6=25		
65-70	3	25+3=28		
70-75	2	28+2=30		

Here, we have, n=30

So, $\frac{n}{2} = 15$, therefore the median class is 55 - 60.

Here l = 55, n = 30, f = 6, c. f. = 13 and h = 5

Using the formula of median,

Median =
$$l + \left[\frac{\frac{n}{2} - c.f.}{f}\right] \times h$$

= 55 + $\left[\frac{15 - 13}{6}\right] \times 5$ = 55 + $\frac{5}{3}$ = 55 + 1.67 = 56.67 kg

Hence, median weight of the students = 56.67 kg.