	Section - A			
Q.1	Find HCF of 867 and 255 using Euclid's division Algorithm.	$\left[2\frac{1}{2}\right]$		
Solution-	Step I : 867 > 255, we apply the division lemma to 867 and 255, to get			
	867 = 255 × 3 + 102			
	Step II : Since the remainder $102 \neq 0$, we apply the division lemma to 255 and 102, to get			
	255 = 102 × 2 + 51			
	Step III : Since the remainder 51 \neq 0, we apply division lemma to 102 and 51, to get			
	$102 = 51 \times 2 + 0$			
	Now the remainder is Zero. So our procedure stops. Since the divisor at this	stage is 51. So the		
Q.2	Find LCM and HCF of 26 and 91.	$\left[2\frac{1}{2}\right]$		
Solution-	26 and 91			
	We have prime factor of 26			
	2 26			
	13			
	$26 = 2 \times 13$			
	We have prime factor of 91			
	7 91			
	13			
	91 = 7 × 13			
	HCF (26,91) = Product of the smallest power of each common prime factor i	n the numbers.		
	Hence, HCF (26,91) = $13^1 = 13$			
	LCM (26, 91) = Product of the greatest power of each prime factor involved in the numbers.			
	Hence, LCM (26, 91) = $2^1 \times 7^1 \times 13^1$			
	= 2 × 7 × 13			
	= 182			
	Verification			
	LCM v HCE Droduct of two numbers			

 $LCM \times HCF = Product of two numbers$

 $\Rightarrow 182 \times 13 = 26 \times 91$

⇒ 2366 = 2366.

Solution :

Given

Solve the following pair of linear equation : Q.3 x + y = 14x - y = 4Solution : Given pair of linear equations x + y = 14.....(i) x - y = 4.....(ii) From equation (i), we get y = 14 - x.....(iii) Substituting this value of y in equation (ii), we get x - (14 - x) = 4x - 14 + x = 4 $\Rightarrow 2x = 4 + 14$ $\Rightarrow 2x = 18$ $\Rightarrow x = \frac{18}{2} = 9$ Substituting the value of x in equation (iii, we get y = 14 - 9 = 5Hence x = 9, y = 5. Find the roots of quadratic equation Q.4 $100x^2 - 20x + 1 = 0$ Let us first split the middle term $-20x as - 10x - 10x(because 10x \times 10x = 100x^2)$ Solution : So, $100x^2 - 10x - 10x + 1 = 0$ $\Rightarrow 10x(10x-1) - 1(10x-1) = 0$ $\Rightarrow (10x-1)(10x-1) = 0$ Either (10x - 1) = 0 or (10x - 1) = 1 $\Rightarrow 10x = 1 \text{ or } 10x - 1 = 0$ $\Rightarrow x = \frac{1}{10} \text{ or } x = \frac{1}{10}$ Hence, given equation have two repeated roots, one for each repeated factor. ABC is an isosceles triangle, right angled at C. Prove that $AB^2 = 2AC^2$ Q.5

An isosceles $\triangle ABC$ which is right angled at C.

 $\left[2\frac{1}{2}\right]$

 $\left[2\frac{1}{2}\right]$

 $\left[2\frac{1}{2}\right]$

Q.6

 $\Rightarrow AC = BC \text{ and } \angle ACB = 90^{\circ}$ To prove $AB^2 = 2AC^2$ Proof In right $\triangle ABC$ $AB^2 = AC^2 + BC^2$ (By pythagoras theorem) $AB^2 = AC^2 + AC^2 \qquad [:: BC = AC]$ $AB^2 = 2AC^2$ $\therefore AB^2 = 2AC^2$ Hence, we proved the result. If Q(0, 1) is equidistant from points P(5, -3) and R(x, 6). Then find the value of x and also $\left[2\frac{1}{2}\right]$ find the distance QR and PR. The point Q(0,1) is equidistant from the points P(5,3) and R(x,6)Solution : $\therefore QP = QR$ $\Rightarrow \sqrt{(5-0)^2 + (-3-1)^2} = \sqrt{(x-0)^2 + (6-1)^2}$ $\Rightarrow \sqrt{25+16} = \sqrt{x^2+25}$ $\Rightarrow 25 + 16 = x^2 + 25$ $\Rightarrow x^2 = 16$ $\Rightarrow x = \pm 4$ Now, QR = $\sqrt{(x-0)^2 + (6-1)^2}$ $=\sqrt{x^2+25}$ $=\sqrt{16+25}$ (: $x^2 = 16$) $=\sqrt{41}$ and PQ = $\sqrt{(x-5)^2 + (6+3)^2}$ When x = 4 $PR = \sqrt{(4-5)^2 + (6+3)^2}$ $=\sqrt{1+81}$

 $\left[2\frac{1}{2}\right]$

$$= \sqrt{82}$$

$$PR = \sqrt{(-4-5)^2 + (6+3)^2}$$

$$= \sqrt{81+81} = \sqrt{162} = 9\sqrt{2}$$

Q.7

The length of a tangent from a point A at a distance 5cm from the centre of the circle is 4 cm. $\left[2\frac{1}{2}\right]$

Find the radius of the circle.

Solution :

Let radius of the circle = rcm The length of the tangent from point A =4cm The length of point A from the centre of the circle = 5cm We know, $\angle OBA = 90^{\circ}$ In right $\triangle AOB$, $(AO)^2 = (AB)^2 + (OB)^2$ \Rightarrow (5)²=(4)²+r² \Rightarrow $r^2 = (5)^2 - (4)^2 = 25 - 16 = 9$

$$\Rightarrow$$
 $r = 3$

Hence, radius of the circle = 3 cm

Q.8 Construct a triangle with sides 4 cm, 5 cm & 6 cm and then another triangle similar to it

whose

sides are $\frac{2}{3}$ of the corresponding sides of first triangle.

Given a triangle ABC, of sides 4cm, 5 cm, and 6 cm, we are required to construct a triangle Solution : whose sides are $\frac{2}{3}$ of the corresponding sides of $\triangle ABC$.

Steps of constructions :

(i) Draw a ray BQ making an acute angle with BC below the side of BC.

(II) Mark 3 points B_1 , B_2 , B_3 (the greater of 2 and 3 in $\frac{2}{3}$) on BQ, so that $BB_1 = B_1B_2 = B_2B_3$.

(iii) Join C and B_3

	(iv) Draw a line through point B_2 (the smaller of 2 and 3 in $\frac{2}{3}$) which is parallel to the	the line B_3 C,	
	to intersect BC at C'.		
	(v) Through C' draw a line parallel to the line AC to intersect AB at A' .		
	Hence A 'BC' is the triangle, whose sides are $\frac{2}{3}$ of the sides of $\triangle ABC$.		
Q.9	A box contains 3 blue, 2 white, 4 red marbles. If a marble is taken out randomly, then		
	calculate the probability that it will be a white marble.	$\left[2\frac{1}{2}\right]$	
Solution :	Total marbles = 3 + 2 + 4 = 9		
	Number of white marbles = 2		
	\therefore Probability of getting white marbles = $\frac{2}{9}$		
Q.10	One card is drawn from a well shuffled deck of 52 cards. Find the probability of ge	etting a red	
	face card.	$\left[2\frac{1}{2}\right]$	
Solution :	Total outcomes = 52		
	Number of red face card (2King, 2Queen and 2 Jack) = 6		
	: Probability of getting red face card = $\frac{6}{52} = \frac{3}{26}$.		

SECTION-B

Q.11 Divide $(x^4 - 3x^2 + 4x + 5)$ by $(x^2 + 1 - x)$. Solution: $p(x) = (x^4 - 3x^2 + 4x + 5)$, $g(x) = (x^2 + 1 - x)$ Here, divisor is not in standard from. The standard from of $g(x) = x^2 - x + 1$ Now, dividend and divisor are in standard from.

$$x^{2} - x + 1)\overline{x^{4} + 0x^{3} - 3x^{2} + 4x + 5}$$

$$x^{4} - x^{3} + x^{2}$$

$$x^{3} - 4x^{2} + 4x + 5$$

Q.12

Now, we stop the process because degree of dividend (remainder) becomes less than the degree of divisor. Hence, remainder = 8 and quotient = $x^2 + x - 3$. $\left[3\frac{1}{2}\right]$ Solve the pair of equations graphically x - y + 1 = 03x + 2y - 12 =0 Solution : Given equations are x - y + 1 = 0.....(i) 3x + 2y - 12 = 0(ii) and Let us draw the graphs of two equations : We have, -1 2 0 Х x - y + 1 = 03 0 y 1 y = x + 1 \Rightarrow and 3x+2y = 120 4 2 Х $y = \frac{12-3x}{2}$

0

6 у

3

From the graph, we find co-ordinates of the vertices of the triangle ABC formed by these lines and x-axis are : A (2,3) B (-1,0), and C (2,3).

 $\left[3\frac{1}{2}\right]$ Q.13 How many three digit numbes are divisible by 7? Solution : Let the three digit number, which is divisible by 7 are n. Here a = 105, d = 7 and a_n = 994 We know that $a_n = [a + (n-1)d]$ $\Rightarrow 994 = [105 + (n-1)7]$ \Rightarrow 994 = 105 + 7n - 7 \Rightarrow 7*n* + 98 = 994 $\Rightarrow 7n = 994 - 98$ $\Rightarrow 7n = 896$ $\Rightarrow n = \frac{896}{7} = 128$ Hence, the three digit numbers which is divisible by 7 are 128. Q.14 Triangle ABC is an isosceles triangle with AC = BC. $\left[3\frac{1}{2}\right]$ If $AB^2 = 2AC^2$ then prove that triangle ABC is a right angled triangle.

Solution : Given

An isosceles $\triangle ABC$ which AC = BC

$$AB^2 = 2AC^2$$

To Prove

 ΔABC is a right triangle.

Proof

In right $\triangle ABC$, AC	(i)	
$AB^2 = 2AC^2$	(Given)	(ii)
Now, $AC^2 + BC^2$	$A^2 = AC^2 + AC^2$	(using (i))
$\Rightarrow AC^2 + BC^2 =$	= 2 <i>AC</i> ²	
$\Rightarrow AC^2 + BC^2 =$	AB^2	(using (ii))

Hence, by the converse of the pythagoras theorem, we have ΔABC right angle at C.

Prove that : $\frac{\sin \theta - \sin^3 \theta}{2\cos^3 \theta - \cos \theta} = tan\theta$ $\left[3\frac{1}{2}\right]$ Q.15 L.H.S.= $\frac{\sin \theta - \sin^3 \theta}{2\cos^3 \theta - \cos \theta} = \tan \theta$ Solution : $=\frac{\sin\theta\times(1-2\sin^2\theta)}{\cos\theta\times(2\cos^2\theta-1)}$ $=\frac{sin\theta \times (cos^2\theta + sin^2\theta - 2sin^2\theta)}{cos\theta \times [2cos^2\theta - (cos^2\theta + sin^2\theta)]}$ $(: \cos^2\theta + \sin^2\theta = 1)$ $=\frac{\sin\theta \times (\cos^2\theta - \sin^2\theta)}{\cos\theta \times (\cos^2\theta - \sin^2\theta)}$ $=\frac{\sin\theta}{\cos\theta} = tan\theta = R.H.S$ $\therefore L.H.S. = R.H.S.$ Evaluate : $2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ$ $[3\frac{1}{2}]$ Q.16 $2 \tan^2 45^{\circ} + \cos^2 30^{\circ} - \sin^2 60^{\circ}$ Solution : $= 2 (1)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2} - \left(\frac{\sqrt{3}}{2}\right)^{2}$ $=2+\frac{3}{4}-\frac{3}{4}=2.$

Q.17 An umbrella has 8 ribs which are equally spaced. Assuming umbrella to be a flat circle of radius 45 cm. Find the area between the two consecutive ribs of the umbrella. $\left[3\frac{1}{2}\right]$

Solution :

Angle subtended at the centre between two consecutive ribs = $\frac{360^{\circ}}{8} = 45^{\circ}$

Therefore, area between two consecutive ribs of the umbrella = The area of the shaded sector

$$OAB = \frac{\theta}{360} \times \pi r^{2}$$
$$= \frac{45^{\circ}}{360} \times 3.14 \times 45 \times 45$$
$$= \frac{22275}{28} cm^{2}.$$

SERIES-A MATHEMATICS

SERIES-A MATHEMATICS

shaded region. $(\pi = 3.14)$

Solution : Let draw a diagonal OB in square OABC

AB = BC = OA = OC = 20 cm

Because OABC is a square, so $\angle QOP = 90^{\circ}$

Diagonal (OB) =
$$\sqrt{OA^2 + OB^2}$$

$$OB = \sqrt{20^2 + 20^2} = \sqrt{400 + 400} = 20\sqrt{2} \text{ cm}$$

But in figure, we have

Diagonal = radius of the circle = $20\sqrt{2}$ cm.

Therefore, the area of shaded portion = Area of quadrant OPQ of circle - Area of square

$$= \left[\frac{\theta}{360} \times \pi r^2 - (side)^2\right]$$
$$= \left[\frac{90}{360} \times \frac{22}{7} (20\sqrt{2})^2 - (20)^2\right]$$
$$= \left[\frac{1}{4} \times 3.14 \times 800 - 400\right]$$
$$= 628 - 400 = 228 \ cm^2.$$

Q.19 Find the area of triangle whose vertices are (2, 3), (-1,0), (2,-4).

Solution : Let vertices of a given triangle ABC are A (2,3), B (-1,0) and C (2,-4)

Hence,
$$x_1 = 2$$
 and $y_1 = 3$
 $x_2 = -1$ and $y_2 = 0$

$$x_3 = 2$$
 and $y_3 = -4$

We know that area of $\triangle ABC$

$$= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$
$$= \frac{1}{2} [2(0 - 4) - 1(-4 - 3) + 2(3 - 0)]$$

 $\left[3\frac{1}{2}\right]$

 $\left[3\frac{1}{2}\right]$

 $\left[3\frac{1}{2}\right]$

 $=\frac{1}{2}(8+7+6)=\frac{1}{2}\times 21$

= 10.5 sq. units.

Q.20 Find the area of a rhombus if its vertices are (3, 0), (4, 5), (-1, 4) and (-2, -1) taken in order.

Solution : Let A (3, 0), B (4, 5), C (-1, 4) and D (-2, -1) are the vertices of the rhombus.

$$=\frac{1}{2}(BD \times AC) = \frac{1}{2}(6\sqrt{2} \times 4\sqrt{2})$$

= 24 square units.

SECTION- C

Q.21The difference of square of two numbers is 180. If square of smaller number is equal to 8times the bigger number then find the two numbers.[5]

Solution : Let smaller number = *x*

and larger number = y

According to first condition,

 $x^2 = 8y$ (i)

According to second condition,

$$y^2 - x^2 = 180$$
(ii)

Putting the value of x^2 from equation, (i) in equation (ii), we get

$$y^2 - 8y - 180 = 0$$
(iii)

Which is a quadratic equation.

⇒
$$y^2 - 18y + 10y - 180 = 0$$

⇒ $y(y - 18) + 10(y - 18) = 0$
⇒ $(y - 18)(y + 10) = 0$
Either $y - 18 = 0$ or $y + 10 = 0$
⇒ $y = 18$ or $y = -10$
when $y = 18$ then $x^2 = 8y$
⇒ $x^2 = 8 \times 18$
⇒ $x^2 = 144$
⇒ $x = \sqrt{144}$
⇒ $x = \sqrt{144}$
⇒ $x = \sqrt{144}$
⇒ $x = \sqrt{144}$
⇒ $x^2 = 10$ then $x^2 = 8y$
⇒ $x^2 = 8 \times -10$
⇒ $x^2 = -80$
⇒ $x = \sqrt{-80}$
⇒ $x \notin R$
Hence, $Y = 18$
and $x = 12$ or -12
Case-1
If smaller number = 12
then larger number $(y) = \frac{x^2}{8} = \frac{(12)^2}{8} = \frac{144}{8} = 18$
Case -2

If smaller number =-12

then larger number (y)

$$=\frac{x^2}{8} = \frac{(-12)^2}{8}$$
$$=\frac{144}{8} = 18.$$

Q.22 If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct point, the other two sides are divided in the same ratio. [5]

Solution : Given

 $\Delta ABC\,$ and a line parallel to BC intersects Ab at D and AC at E

To prove

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Construction

We join B and E, C and D then draw $EF \perp AB$, and $DN \perp AC$

Proof

We have, $ar(\Delta BDE) = ar(\Delta CDE)$

(The two areas are equal because the two triangles are on the same base DE and between same parallel line DE and BC)

We have

$$\frac{ar (\Delta ADE)}{ar (\Delta BDE)} = \frac{\frac{1}{2} \times AD \times EF}{\frac{1}{2} \times BD \times EF} = \frac{AD}{BD}$$

$$ar (\Delta ADE) = \frac{AD}{BD} \times ar (\Delta BDE) \dots (i)$$
Similarly $\frac{ar (\Delta ADE)}{ar (\Delta CDE)} = \frac{\frac{1}{2} \times AE \times DN}{\frac{1}{2} \times EC \times DN}$

$$= \frac{AE}{EC}$$

$$ar (\Delta ADE) = \frac{AE}{EC} \times ar (\Delta CDE) \dots (ii)$$
From (i) and (ii), we get
$$\frac{AD}{BD} \times ar (\Delta BDE) = \frac{AE}{EC} \times ar (\Delta CDE) \qquad [\because ar (\Delta BDE) = ar (\Delta CDE)]$$

$$\Rightarrow \frac{AD}{BD} = \frac{AE}{EC}$$

Hence, we proved the result.

Q.23 From the top of a 7m high Bulding the angle of elevation of the top of a cable tower is 60⁰ and the angle of depression of its foot is 45⁰. Determine the height of the tower. [5]

Solution Let the height of the tower = hm

and let the distance between foot of the tower and foot of the building = xm

From the top of a building, the angle of elevaion of the top of a cable tower = 60°

 $\Rightarrow \angle ECD = 60^{\circ}$

From the top of a building the angle of depression of $= 45^{\circ}$

 $\Rightarrow \angle CBA = 45^{\circ}$

(Alternate, angles $\angle DCB = \angle CBA$)

In right $\triangle CBA$,

$$\frac{CA}{AB} = \tan 45^{\circ} \Rightarrow \frac{7}{x} = 1 \Rightarrow x = 7m$$
Now, right $\triangle CBA$,
$$\frac{ED}{CD} = \tan 60^{\circ}$$

$$\Rightarrow \frac{EB-DB}{x} = \sqrt{3}$$

$$\Rightarrow \frac{h-7}{7} = \sqrt{3} (\because x = 7m)$$

$$\Rightarrow h = 7\sqrt{3} + 7 \Rightarrow h = 7(\sqrt{3} + 1)$$

Hence, height of the cable tower = $7(\sqrt{3} + 1)m$.

Q.24 A metallic sphere of radius 4.2cm is melted and recast into the shape of cylinder of radius 6 cm. Find the height of the cylinder. [5]

Ans. Given

Radius of the sphere $(r_1) = 4.2 \ cm$

Radius of the cylinder $(r_2) = 6 \ cm$

LEt the height of the cylinder = h cm

We know that

Volume of sphere = Volume of cylinder

$$\Rightarrow \frac{4}{3} \pi r_1^3 = \pi r_2^2 h$$

$$\Rightarrow h = \frac{4}{3} \pi r_1^3 \times \frac{1}{\pi r_2^2}$$

$$= \frac{4}{3} \cdot \frac{(4.2) \times (4.2) \times (4.2)}{6 \times 6} = 2.74 \ cm$$

Q.25 The folloiwng table givens the distribution of life time of 400 neon Lamps. Find the median life time of lamp. [5]

	•
Life time (in hours)	No. of Lamps
1500-2000	14
2000-2500	56
2500-3000	60
3000-3500	86
3500-4000	74
4000-4500	62
4500-5000	48

ANS.

Life time (in hours)	Number of lamps (f ₁)	Cumulative Frequency
		(c.f.)
1500-2000	14	14
2000-2500	56	70
2500-3000	60	130
3000-3500	86	216
3500-4000	74	290
4000-4500	62	352
4500-5000	48	400
	n=200	

Here, we have n = 200, so $\frac{n}{2} = 100$

Hence, medium class is 3000 - 3500

Therefore, l = 3000, f = 86, c. f. = 130 and h = 500

Using the formula of median,

Median =
$$l + \left[\frac{\frac{n}{2} - c.f.}{f}\right] \times h$$

= 3000 $\left[\frac{200 - 130}{86}\right] \times 500$
= 3000 + 406.98
= 3406.98 hours

Hence, median life time of a lamp = 3406.98 hours