Section - A

Q. 1 Find HCF of 867 and 255 using Euclid's division Algorithm.

Solution- Step I: $867>255$, we apply the division lemma to 867 and 255 , to get
$867=255 \times 3+102$
Step II : Since the remainder $102 \neq 0$, we apply the division lemma to 255 and 102 , to get
$255=102 \times 2+51$
Step III : Since the remainder $51 \neq 0$, we apply division lemma to 102 and 51 , to get $102=51 \times 2+0$
Now the remainder is Zero. So our procedure stops. Since the divisor at this stage is 51 . So the HCF of 867 and 255 is 51 .

Q. $2 \quad$ Find LCM and HCF of 26 and 91.

Solution- 26 and 91
We have prime factor of 26

2	26
	13
$26=2 \times 13$	

We have prime factor of 91

7	91
	13
$91=7 \times 13$	

$91=7 \times 13$
HCF $(26,91)=$ Product of the smallest power of each common prime factor in the numbers.
Hence, $\operatorname{HCF}(26,91)=13^{1}=13$
LCM $(26,91)=$ Product of the greatest power of each prime factor involved in the numbers.
Hence, LCM $(26,91)=2^{1} \times 7^{1} \times 13^{1}$

$$
\begin{aligned}
& =2 \times 7 \times 13 \\
& =182
\end{aligned}
$$

Verification

LCM \times HCF $=$ Product of two numbers
$\Rightarrow 182 \times 13=26 \times 91$
$\Rightarrow 2366=2366$.

Q. 3
 Solve the following pair of linear equation :

$$
\begin{aligned}
& x+y=14 \\
& x-y=4
\end{aligned}
$$

Solution : Given pair of linear equations
$x+y=14$
$x-y=4$
From equation (i), we get
$y=14-x$
Substituting this value of y in equation
(ii), we get

$$
\begin{aligned}
& x-(14-x)=4 \\
& x-14+x=4 \\
\Rightarrow & 2 x=4+14 \\
\Rightarrow & 2 x=18 \\
\Rightarrow & x=\frac{18}{2}=9
\end{aligned}
$$

Substituting the value of x in equation (iii, we get
$y=14-9=5$
Hence $x=9, y=5$.
Q. 4 Find the roots of quadratic equation

$$
100 x^{2}-20 x+1=0
$$

Solution: Let us first split the middle term -20x as $-10 x-10 x$ (because $10 x \times 10 x=100 x^{2}$
So, $100 x^{2}-10 x-10 x+1=0$
$\Rightarrow 10 x(10 x-1)-1(10 x-1)=0$
$\Rightarrow(10 x-1)(10 x-1)=0$
Either $(10 x-1)=0$ or $(10 x-1)=1$
$\Rightarrow 10 x=1$ or $10 x-1=0$
$\Rightarrow x=\frac{1}{10}$ or $x=\frac{1}{10}$
Hence, given equation have two repeated roots, one for each repeated factor.
Q. 5

ABC is an isosceles triangle, right angled at C . Prove that $A B^{2}=2 A C^{2}$
Solution: Given
An isosceles $\triangle A B C$ which is right angled at C .
$\Rightarrow A C=B C$ and $\angle A C B=90^{\circ}$
To prove
$A B^{2}=2 A C^{2}$

Proof
In right $\triangle A B C$
$A B^{2}=A C^{2}+B C^{2}(B y$ pythagoras theorem $)$
$A B^{2}=A C^{2}+A C^{2} \quad[\therefore B C=A C]$

$$
A B^{2}=2 A C^{2}
$$

$\therefore \quad A B^{2}=2 A C^{2}$
Hence, we proved the result.
Q. 6 If $Q(0,1)$ is equidistant from points $P(5,-3)$ and $R(x, 6)$. Then find the value of x and also find the distance QR and PR.

Solution : The point $Q(0,1)$ is equidistant from the points $P(5,3)$ and $R(x, 6$
$\therefore Q P=Q R$
$\Rightarrow \sqrt{(5-0)^{2}+(-3-1)^{2}}=\sqrt{(x-0)^{2}+(6-1)^{2}}$
$\Rightarrow \sqrt{25+16}=\sqrt{x^{2}+25}$
$\Rightarrow 25+16=x^{2}+25$
$\Rightarrow x^{2}=16$
$\Rightarrow x= \pm 4$
Now, $\mathrm{QR}=\sqrt{(x-0)^{2}+(6-1)^{2}}$

$$
=\sqrt{x^{2}+25}
$$

$$
=\sqrt{16+25} \quad\left(\therefore x^{2}=16\right)
$$

$$
=\sqrt{41}
$$

and $P Q=\sqrt{(x-5)^{2}+(6+3)^{2}}$
When $\mathrm{x}=4$
$P R=\sqrt{(4-5)^{2}+(6+3)^{2}}$

$$
=\sqrt{1+81}
$$

	$=\sqrt{82}$
$P R=\sqrt{(-4-5)^{2}+(6+3)^{2}}$	
	$=\sqrt{81+81}=\sqrt{162}=9 \sqrt{2}$

Q. 7 The length of a tangent from a point A at a distance 5 cm from the centre of the circle is $\mathbf{4} \mathbf{~ c m}$. Find the radius of the circle.

Solution :

Let radius of the circle $=\mathrm{rcm}$
The length of the tangent from point $A=4 \mathrm{~cm}$
The length of point A from the centre of the circle $=5 \mathrm{~cm}$
We know, $\angle O B A=90^{\circ}$
In right $\triangle A O B$,

$$
(\mathrm{AO})^{2}=(\mathrm{AB})^{2}+(\mathrm{OB})^{2}
$$

$\Rightarrow \quad(5)^{2}=(4)^{2}+r^{2}$
$\Rightarrow \quad r^{2}=(5)^{2}-(4)^{2}=25-16=9$
$\Rightarrow \quad r=3$
Hence, radius of the circle $=3 \mathrm{~cm}$
Q. $8 \quad$ Construct a triangle with sides $4 \mathrm{~cm}, 5 \mathrm{~cm} \& 6 \mathrm{~cm}$ and then another triangle similar to it whose
sides are $\frac{2}{3}$ of the corresponding sides of first triangle.
Solution: Given a triangle $A B C$, of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$, and 6 cm , we are required to construct a triangle whose sides are $\frac{2}{3}$ of the corresponding sides of $\triangle A B C$.

Steps of constructions:

(i) Draw a ray $B Q$ making an acute angle with $B C$ below the side of $B C$.

(II) M ark 3 points $B_{1}, B_{2} \quad B_{3}$ (the greater of 2 and 3 in $\frac{2}{3}$) on BQ , so that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}$.
(iii) Join C and B_{3}
(iv) Draw a line through point B_{2} (the smaller of 2 and 3 in $\frac{2}{3}$) which is parallel to the line $B_{3} C$, to intersect BC at C^{\prime}.
(v) Through C^{\prime} draw a line parallel to the line AC to intersect AB at A^{\prime}.

Hence $\mathrm{A}^{\prime} B C^{\prime}$ ' is the triangle, whose sides are $\frac{2}{3}$ of the sides of $\triangle A B C$.
Q. 9 A box contains 3 blue, 2 white, 4 red marbles. If a marble is taken out randomly, then calculate the probability that it will be a white marble.

Solution: \quad Total marbles $=3+2+4=9$
Number of white marbles $=2$
\therefore Probability of getting white marbles $=\frac{2}{9}$
Q. 10 One card is drawn from a well shuffled deck of 52 cards. Find the probability of getting a red face card.

Solution: \quad Total outcomes $=52$
Number of red face card (2 King, 2 Queen and 2 Jack) $=6$
\therefore Probability of getting red face card $=\frac{6}{52}=\frac{3}{26}$.

SECTION-B

Q. 11

Divide $\left(x^{4}-3 x^{2}+4 x+5\right)$ by $\left(x^{2}+1-x\right)$.
Solution: $\quad p(x)=\left(x^{4}-3 x^{2}+4 x+5\right)$, $g(x)=\left(x^{2}+1-x\right)$
Here, divisor is not in standard from.
The standard from of $g(x)=x^{2}-x+1$ Now, dividend and divisor are in standard from.

$$
\begin{array}{r}
x ^ { 2 } - x + 1 \longdiv { x ^ { 2 } + x - 3 } \begin{array} { r }
{ x ^ { 4 } + 0 x ^ { 3 } - 3 x ^ { 2 } + 4 x + 5 } \\
{ \frac { x ^ { 4 } - x ^ { 3 } + x ^ { 2 } } { } } \\
{ \frac { x ^ { 3 } - x ^ { 2 } + 4 x + 5 } { + x ^ { 2 } + x } } \\
{ \frac { - 3 x ^ { 2 } + 3 x + 5 } { + 3 x ^ { 2 } + 3 x - 3 } + }
\end{array}
\end{array}
$$

Now, we stop the process because degree of dividend (remainder) becomes less than the degree of divisor.
Hence, remainder =8
and quotient $=x^{2}+x-3$.
Q. 12 Solve the pair of equations graphically

$$
\begin{aligned}
& x-y+1=0 \\
& 3 x+2 y-12=0
\end{aligned}
$$

Solution: Given equations are
$x-y+1=0$
and $3 x+2 y-12=0$
Let us draw the graphs of two equations:
We have,

$$
\begin{aligned}
& \mathrm{x}-\mathrm{y}+1=0 \\
\Rightarrow \quad & y=x+1
\end{aligned}
$$

x	0	-1	2
y	1	0	3

and $3 x+2 y=12$
$\Rightarrow \quad y=\frac{12-3 x}{2}$

x	0	4	2
y	6	0	3

From the graph, we find co-ordinates of the vertices of the triangle $A B C$ formed by these lines and x-axis are : $A(2,3) B(-1,0)$, and $C(2,3)$.

Q. 13

How many three digit numbes are divisible by 7?
Solution: The given AP which is divisible by 7 is $105,112,119$, 994

Let the three digit number, which is divisible by 7 are n .
Here $\mathrm{a}=105, \mathrm{~d}=7$ and $a_{n}=994$
We know that

$$
\begin{aligned}
& a_{n}=[a+(n-1) d] \\
& \Rightarrow 994=[105+(n-1) 7] \\
& \Rightarrow 994=105+7 n-7 \\
& \Rightarrow 7 n+98=994 \\
& \Rightarrow 7 n=994-98 \\
& \Rightarrow 7 n=896 \\
& \Rightarrow n=\frac{896}{7}=128
\end{aligned}
$$

Hence, the three digit numbers which is divisible by 7 are 128.
Q. 14 Triangle ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$.

If $A B^{2}=2 A C^{2}$ then prove that triangle $A B C$ is a right angled triangle.
Solution: Given
An isosceles $\triangle A B C$ which $A C=B C$
$A B^{2}=2 A C^{2}$

To Prove
$\triangle A B C$ is a right triangle.

Proof

In right $\triangle A B C, A C=B C$ Given \qquad
$A B^{2}=2 A C^{2} \quad$ (Given)
Now, $A C^{2}+B C^{2}=A C^{2}+A C^{2}$
$\Rightarrow A C^{2}+B C^{2}=2 A C^{2}$
$\Rightarrow A C^{2}+B C^{2}=A B^{2}$
Hence, by the converse of the pythagoras theorem, we have $\triangle A B C$ right angle at C .
Q. 15 Prove that: $\frac{\sin \theta-\sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$

Solution: L.H.S. $=\frac{\sin ^{\theta} \theta-\sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$
$=\frac{\sin \theta \times\left(1-2 \sin ^{2} \theta\right)}{\cos \theta \times\left(2 \cos ^{2} \theta-1\right)}$
$=\frac{\sin \theta \times\left(\cos ^{2} \theta+\sin ^{2} \theta-2 \sin ^{2} \theta\right)}{\cos \theta \times\left[2 \cos ^{2} \theta-\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\right]}$

$$
\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right)
$$

$=\frac{\sin \theta \times\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{\cos \theta \times\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}$
$=\frac{\sin \theta}{\cos \theta}=\tan \theta=$ R.H.S
\therefore L.H.S. $=$ R.H.S.
Q. $16 \quad$ Evaluate : $\mathbf{2} \boldsymbol{\operatorname { t a n }}^{\mathbf{2}} \mathbf{4 5 ^ { \circ }}+\boldsymbol{\operatorname { c o s }}^{\mathbf{2}} \mathbf{3 0}{ }^{\circ}-\boldsymbol{\operatorname { s i n }}^{\mathbf{2}} \mathbf{6 0 ^ { \circ }}$

Solution: $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$

$$
\begin{aligned}
& =2(1)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2} \\
& =2+\frac{3}{4}-\frac{3}{4}=2 .
\end{aligned}
$$

Q. 17 An umbrella has 8 ribs which are equally spaced. Assuming umbrella to be a flat circle of radius 45 cm . Find the area between the two consecutive ribs of the umbrella. [$\left.3 \frac{1}{2}\right]$
Solution:

Radius of circle $=45 \mathrm{~cm}$
Angle subtended at the centre between two consecutive ribs $=\frac{360^{\circ}}{8}=45^{\circ}$
Therefore, area between two consecutive ribs of the umbrella $=$ The area of the shaded sector
$\mathrm{OAB}=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{45^{\circ}}{360} \times 3.14 \times 45 \times 45$
$=\frac{22275}{28} \mathrm{~cm}^{2}$.
Q. 18

In figure, a square $O A B C$ is inscribed in a quadrant $O P B Q$. If $O A=20 \mathrm{~cm}$. Find Area of the shaded region. $(\pi=3.14)$

Solution : Let draw a diagonal $O B$ in square $O A B C$
$A B=B C=O A=O C=20 \mathrm{~cm}$
Because $O A B C$ is a square, so $\angle Q O P=90^{\circ}$
Diagonal (OB) $=\sqrt{O A^{2}+O B^{2}}$

$$
\begin{aligned}
O B & =\sqrt{20^{2}+20^{2}} \\
& =\sqrt{400+400} \\
& =20 \sqrt{2} \mathrm{~cm}
\end{aligned}
$$

But in figure, we have
Diagonal $=$ radius of the circle $=20 \sqrt{2} \mathrm{~cm}$.
Therefore, the area of shaded portion =Area of quadrant OPQ of circle - Area of square
$=\left[\frac{\theta}{360} \times \pi r^{2}-(\text { side })^{2}\right]$
$=\left[\frac{90}{360} \times \frac{22}{7}(20 \sqrt{2})^{2}-(20)^{2}\right]$
$=\left[\frac{1}{4} \times 3.14 \times 800-400\right]$
$=628-400=228 \mathrm{~cm}^{2}$.
Q. 19

Find the area of triangle whose vertices are (2, 3), (-1,0), (2,-4).
Solution : Let vertices of a given triangle ABC are $\mathrm{A}(2,3), \mathrm{B}(-1,0)$ and $\mathrm{C}(2,-4)$
Hence, $x_{1}=2$ and $y_{1}=3$

$$
\begin{aligned}
& x_{2}=-1 \text { and } y_{2}=0 \\
& x_{3}=2 \text { and } y_{3}=-4
\end{aligned}
$$

We know that area of $\triangle A B C$
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[2(0-4)-1(-4-3)+2(3-0)]$
$=\frac{1}{2}(8+7+6)=\frac{1}{2} \times 21$
$=10.5$ sq. units.
Q. 20 Find the area of a rhombus if its vertices are (3, 0), (4, 5), (-1, 4) and ($-2,-1$) taken in order.

$$
\left[3 \frac{1}{2}\right]
$$

Solution : \quad Let $A(3,0), B(4,5), C(-1,4)$ and $D(-2,-1)$ are the vertices of the rhombus.

Here, diagonal BD

$$
\begin{aligned}
= & \sqrt{[4-(-2)]^{2}+(5-(-1))^{2}} \\
= & \sqrt{(4+2)^{2}+(5+1)^{2}}=\sqrt{(6)^{2}+(6)^{2}} \\
= & \sqrt{36+36} \\
& B D=\sqrt{72}=6 \sqrt{2} .
\end{aligned}
$$

and diagonal $\mathrm{AC}=\sqrt{(-1-3)^{2}}+(4-0)^{2}$

$$
\begin{gathered}
=\sqrt{(-4)^{2}+(4)^{2}} \\
=\sqrt{16+16} \\
A C=\sqrt{32}=4 \sqrt{2}
\end{gathered}
$$

We know that area of rhombus

$$
=\frac{1}{2}(B D \times A C)=\quad \frac{1}{2}(6 \sqrt{2} \times 4 \sqrt{2})
$$

$=24$ square units.

SECTION-C

Q. 21 The difference of square of two numbers is $\mathbf{1 8 0}$. If square of smaller number is equal to 8 times the bigger number then find the two numbers.
Solution : \quad Let smaller number $=x$
and larger number $=y$
According to first condition,

According to second condition,

$$
\begin{equation*}
y^{2}-x^{2}=180 \tag{ii}
\end{equation*}
$$

Putting the value of x^{2} from equation, (i) in equation (ii), we get

$$
\begin{equation*}
y^{2}-8 y-180=0 \tag{iii}
\end{equation*}
$$

Which is a quadratic equation.
$\Rightarrow y^{2}-18 y+10 y-180=0$
$\Rightarrow y(y-18)+10(y-18)=0$
$\Rightarrow(y-18)(y+10)=0$
Either $y-18=0$ or $y+10=0$
$\Rightarrow y=18$ or $y=-10$
when $\mathrm{y}=18$ then $x^{2}=8 y$
$\Rightarrow x^{2}=8 \times 18$
$\Rightarrow x^{2}=144$
$\Rightarrow x=\sqrt{144}$
$\Rightarrow x= \pm 12$
when $\mathrm{y}=-10$ then $x^{2}=8 y$
$\Rightarrow x^{2}=8 \times-10$
$\Rightarrow x^{2}=-80$
$\Rightarrow x=\sqrt{-80}$
$\Rightarrow x \notin R$
Hence, $\mathrm{Y}=18$
and $x=12$ or -12

Case- 1

If smaller number $=12$
then larger number $(y)=\frac{x^{2}}{8}=\frac{(12)^{2}}{8}=\frac{144}{8}=18$

Case-2

If smaller number $=12$
then larger number (y)

$$
\begin{aligned}
& =\frac{x^{2}}{8}=\frac{(-12)^{2}}{8} \\
& =\frac{144}{8}=18 .
\end{aligned}
$$

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct point, the other two sides are divided in the same ratio.

Solution: Given

$\triangle \mathrm{ABC}$ and a line parallel to BC intersects Ab at D and AC at E

To prove

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

Construction

We join B and E, C and D then draw $\mathrm{EF} \perp A B$, and $D N \perp A C$

Proof

We have, $\operatorname{ar}(\triangle B D E)=\operatorname{ar}(\triangle C D E)$
(The two areas are equal because the two triangles are on the same base DE and between same parallel line DE and BC)

We have
$\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle B D E)}=\frac{\frac{1}{2} \times A D \times E F}{\frac{1}{2} \times B D \times E F}=\frac{A D}{B D}$
$\operatorname{ar}(\triangle A D E)=\frac{A D}{B D} \times \operatorname{ar}(\triangle B D E)$
Similarly $\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle C D E)}=\frac{\frac{1}{2} \times A E \times D N}{\frac{1}{2} \times E C \times D N}$

$$
\begin{equation*}
=\frac{A E}{E C} \tag{ii}
\end{equation*}
$$

$\operatorname{ar}(\triangle A D E)=\frac{A E}{E C} \times \operatorname{ar}(\triangle C D E)$
From (i) and (ii), we get

$$
\begin{aligned}
& \frac{A D}{B D} \times \operatorname{ar}(\triangle B D E)=\frac{A E}{E C} \times \operatorname{ar}(\triangle C D E) \quad[\because \operatorname{ar}(\triangle B D E)=\operatorname{ar}(\triangle C D E)] \\
& \Rightarrow \frac{A D}{B D}=\frac{A E}{E C}
\end{aligned}
$$

Hence, we proved the result.
Q. 23 From the top of a 7 m high Bulding the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.
Solution Let the height of the tower $=h m$ and let the distance between foot of the tower and foot of the building $=x m$

From the top of a building, the angle of elevaion of the top of a cable tower $=60^{\circ}$
$\Rightarrow \angle E C D=60^{\circ}$
From the top of a building the angle of depression of $=45^{\circ}$
$\Rightarrow \angle C B A=45^{\circ}$
(Alternate, angles $\angle D C B=\angle C B A$)
In right $\triangle C B A$,
$\frac{C A}{A B}=\tan 45^{\circ} \Rightarrow \frac{7}{x}=1 \Rightarrow x=7 \mathrm{~m}$
Now, right $\triangle C B A$,
$\frac{E D}{C D}=\tan 60^{\circ}$
$\Rightarrow \frac{E B-D B}{x}=\sqrt{3}$
$\Rightarrow \frac{h-7}{7}=\sqrt{3}(\because x=7 m)$
$\Rightarrow h=7 \sqrt{3}+7 \Rightarrow h=7(\sqrt{3}+1)$
Hence, height of the cable tower $=7(\sqrt{3}+1) \mathrm{m}$.
Q. 24 A metallic sphere of radius 4.2 cm is melted and recast into the shape of cylinder of radius 6 cm . Find the height of the cylinder.

Ans. Given

Radius of the sphere $\left(r_{1}\right)=4.2 \mathrm{~cm}$
Radius of the cylinder $\left(r_{2}\right)=6 \mathrm{~cm}$
LEt the height of the cylinder $=h \mathrm{~cm}$

We know that
Volume of sphere $=$ Volume of cylinder
$\Rightarrow \frac{4}{3} \pi r_{1}^{3}=\pi r_{2}^{2} h$
$\Rightarrow h=\frac{4}{3} \pi r_{1}^{3} \times \frac{1}{\pi r_{2}^{2}}$
$=\frac{4}{3} \cdot \frac{(4.2) \times(4.2) \times(4.2)}{6 \times 6}=2.74 \mathrm{~cm}$
Q. 25 The folloiwng table givens the distribution of life time of $\mathbf{4 0 0}$ neon Lamps. Find the median life time of lamp.

Life time (in hours)	No. of Lamps
$1500-2000$	14
$2000-2500$	56
$2500-3000$	60
$3000-3500$	86
$3500-4000$	74
$4000-4500$	62
$4500-5000$	48

CAREER ACADEMY, NAHAN

ANS.

Life time (in hours)	Number of lamps (f f_{1})	Cumulative Frequency (c.f.)
$1500-2000$	14	14
$2000-2500$	56	70
$2500-3000$	60	130
$3000-3500$	86	216
$3500-4000$	74	290
$4000-4500$	62	352
$4500-5000$	48	400
	$\mathrm{n}=200$	

Here, we have $n=200$, so $\frac{n}{2}=100$
Hence, medium class is $3000-3500$
Therefore, $l=3000, f=86, c . f .=130$ and $h=500$
Using the formula of median,
Median $=l+\left[\frac{\frac{2}{2}-c . f .}{f}\right] \times h$
$=3000\left[\frac{200-130}{86}\right] \times 500$
$=3000+406.98$
$=3406.98$ hours
Hence, median life time of a lamp $=3406.98$ hours

