Q. 1 The principal value of $\tan ^{-1}(-\sqrt{3})$ is:
(a) $\frac{\pi}{2}$
(b) $-\frac{\pi}{3}$
(c) $\frac{\pi}{3}$
(d) $-\frac{\pi}{2}$

Solution: (b)
Q. 2 Let A be a nonsingular square matrix of order 3×3.

Then |adj $A \mid$ is:
(a) $\quad|A|$
(B) $|A|^{3}$
(C) $|A|^{2}$
(D) $|3 A|$

Solution: (c)
Q. 3 The derivative of 5^{x} is :
(a) $\quad 5^{x}$
(b) $\frac{5^{x}}{\log 5}$
(c) $\quad 5^{x} \log 5$
(d) None of these

Solution: (c)
Q. $4 \quad$ On which of the following intervals is the function f given by $f(x)=x^{100}+\sin x-1$ Strictly decreasing?
(a) $(0,1)$
(b) $\quad\left(\frac{\pi}{2}, \pi\right)$
(C) $\quad\left(0, \frac{\pi}{2}\right)$
(d) None of these

Solution: (d)
Q. $5 \quad f e^{x}\left(f(x)+f^{\prime}(x)\right) d x$ is equal to :
(a) $\boldsymbol{e}^{\boldsymbol{x}} \boldsymbol{f}^{\prime}(\boldsymbol{x})+\boldsymbol{c}$
(b) $e^{x} f(x)+c$
(c) $\quad-e^{x} f^{\prime}(x)+c$
(d) $-e^{x} f(x)+c$

Solution: (b)
Q. 6 The degree of differential equation

$$
\frac{d^{3} y}{d x^{3}}+2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0 \text { is: }
$$

(a) 4
(b) 1
(c) 2 (d) Not defined

Solution: (b)
Q. 7 The vectors \vec{a} and \vec{b} are perpendicular if :
(a) $\vec{a} \cdot \vec{b}=0$
(b) $\vec{a} \cdot \vec{b} \neq 0$
(c) $\vec{a} \times \vec{b}=0$
(d) $\vec{a} \times \vec{b} \neq 0$

Solution: (a)

Q. $8 \quad$ Find $|\vec{a}-\vec{b}|, i f|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$
(a) $\sqrt{3}$
(b) $\sqrt{2}$
(c) $\sqrt{5}$
(d) $\sqrt{7}$

Solution: (c)
Q. 9 If a line makes angles $\frac{\pi}{2}, \frac{3 \pi}{4}$ and $\frac{\pi}{4}$ with $\mathrm{x}, \mathrm{y}, \mathrm{z}$-axis, respectively then direction consines of this line are:
(a) $\pm(\mathbf{1}, \mathbf{1}, \mathbf{1})$
(b) $\pm\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(c) $\pm\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
(d) $\pm\left(0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

Solution: (d)
Q. 10 If A and B are independent events, then :
(a) $\quad P(A \cap B)=P(A) \cdot P(B)$
(b) $\quad \mathrm{P}(\mathrm{A} \cup B)=P(A) \cdot P(B)$
(c) $\quad \mathrm{P}(\mathrm{A} \cap B)=P(A)+P(B)$
(d) $\quad \mathrm{P}(\mathrm{A} \cup B)=P(A)+P(B)$

Solution: (a)
Q. 11 Using elementary operations, find the inverse of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$

Solution: $\quad A=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$
We write $A=I A$
$\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Operate $R_{2} \rightarrow R_{2} \rightarrow 2 R_{1}$
$\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right] A$
Operate $R_{1} \rightarrow R_{1} \rightarrow 3 R_{2}$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right] A$
Thus $A^{-1}=\left[\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right]$

> Or

For matrix

$$
A=\left[\begin{array}{ll}
1 & 5 \\
6 & 7
\end{array}\right]
$$

Verify that $A-A^{\prime}$ is a skew symmetric matrix.
Solution: We have, $A=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right] \Rightarrow A^{\prime}=\left[\begin{array}{ll}1 & 6 \\ 5 & 7\end{array}\right]$
Here, $A-A^{\prime}=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]-\left[\begin{array}{cc}1 & 6 \\ 5 & 7\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$;
$\left(A-A^{\prime}\right)^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]=-\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=-\left(A-A^{\prime}\right)$
Which is a skew symmetric matrix.

Q. 12 Examine the function given by

$f(x)=\left(\begin{array}{l}\frac{\sin x}{x}, x<0 \\ x+1, x \geq 0\end{array} \quad\right.$ for continuity.
Solution: Given, $f(x)=\left(\begin{array}{c}\frac{\sin x}{x}, x<0 \\ x+1, x \geq 0\end{array}\right.$
Here, L.H.L. $=\mathrm{Lt}_{x \rightarrow 0^{-}} f(x)=\mathrm{Lt}_{x \rightarrow 0^{-}} \frac{\sin x}{x}=\mathrm{Lt}_{h \rightarrow 0} \frac{-\sinh }{-h}=1$
Also, R.H.L. $=\mathrm{Lt}_{x \rightarrow 0^{+}} f(x)=\mathrm{Lt}_{x \rightarrow 0^{+}}(x+1)=\mathrm{Lt}_{h \rightarrow 0}(0+h)+1=1$
Clearly, L.H.L. $=$ R.H.L.
Therefore, $\mathrm{Lt}_{x \rightarrow 0} f(x)$ exists and is equal to 1.
Also, $f(0)=1=\mathrm{Lt}_{x \rightarrow 0} f(x)$
Therefore, the function is continuous at $x=0$.
Q. 13 A ballon which always remains spherical, has a variable diameter $\frac{3}{2}(2 x+1)$. Find the rate of change of its volume with respect to x.

Solution: Let ' r ' be radius and ' V 'be volume of balloon.

Diameter of the sphere $=\frac{3}{2}(2 x+3)$
\therefore Radius of the sphere $(r)=\frac{1}{2}\left[\frac{3}{2}(2 x+3)\right]=\frac{3}{4}(2 x+3)$
Volume of sphere $(V)=V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \frac{27}{64}(2 x+3)^{3}$

$$
=\frac{9 \pi}{16}(2 x+3)^{3}
$$

Rate of change of volume $=\frac{d V}{d x}=\frac{9 \pi}{16} \cdot 3(2 x+3)^{2} \cdot 2$

$$
=\frac{27 \pi}{8}(2 x+3)^{2}
$$

Q. 14 Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.

Solution: Equation of hyperbolia having focus on x-axis and centre at origin is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Differentiating w.r.t., x we get

$$
\begin{aligned}
\frac{1}{a^{2}} \cdot 2 x-\frac{1}{b^{2}} \cdot 2 y y_{1} & =0 \\
\frac{y y_{1}}{b^{2}} & =\frac{x}{a^{2}} \\
\frac{y y_{1}}{x^{2}} & =\frac{b^{2}}{a^{2}}
\end{aligned}
$$

Again differentiating w.r.t., x we get

$$
\begin{aligned}
& \frac{x \frac{d}{d x} y y_{1}-y y_{1} \frac{d}{d x} x}{x^{2}}=0 \\
& x\left(y y_{2}+y_{1} y_{1}\right)-y y_{1}=0 \\
& x y y_{2}+x\left(y_{1}\right)^{2}-y y_{1}=0
\end{aligned}
$$

Q. 15

Find gof and fog, if $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$
Solution: \quad Here, $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$
Then gof $=g(f(x))=g\left(8 x^{3}\right)=\left(8 x^{3}\right)^{\frac{1}{3}}=2 x$
and $f o g=f(g(x))=f\left(x^{\frac{1}{3}}\right)=8\left(x^{\frac{1}{3}}\right)^{3}=8 x$.
Q. 16

Solve $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$
Solution: We write, $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$
$\Rightarrow \tan ^{-1}\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)=\tan ^{-1}(2 \operatorname{cosec} x)\left[u \operatorname{sing}, 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}\right]$

$$
\begin{aligned}
& \Rightarrow \frac{2 \cos x}{1-\cos ^{2} x}=2 \operatorname{cosec} x \Rightarrow \frac{2 \cos x}{\sin ^{2} x}=\frac{2}{\sin x}=2 \operatorname{cosec} x \\
& \Rightarrow 2 \cos x=2 \sin x \quad \Rightarrow \quad \cos ^{2} x=\sin ^{2} x \\
& \Rightarrow \cos ^{2} x=1-\cos ^{2} x \quad \Rightarrow \quad 2 \cos ^{2} x=1 \\
& \Rightarrow \cos x=\frac{1}{\sqrt{2}} \Rightarrow x=\frac{\pi}{4} .
\end{aligned}
$$

Or

Express for following in the simplest form :

$$
\tan ^{1}\left(\frac{x}{\sqrt{a^{2}-x^{2}}}\right),|x|<a
$$

Solution: Let $x=a \sin \theta$, and $\frac{-\pi}{2}<\theta<\frac{\pi}{2}$
Now $\sqrt{a^{2}-x^{2}}=\sqrt{a^{2}-a^{2} \sin ^{2} \theta}=\sqrt{a^{2} \cos ^{2} \theta}$

$$
=a \cos \theta
$$

$$
\left[\because-\frac{\pi}{2}<\theta<\frac{\pi}{2} \Rightarrow \cos \theta>0\right]
$$

Hence $\tan ^{-1}\left(\frac{x}{\sqrt{a^{2}-x^{2}}}\right)=\tan ^{-1}\left(\frac{a \sin \theta}{a \cos \theta}\right)$

$$
\begin{aligned}
& =\tan ^{-1}(\tan \theta) \\
& =\theta=\sin ^{-1} \frac{x}{a}
\end{aligned}
$$

Q. $17 \quad$ Prove that $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|=4 a b c$

Solution: Consider, L.H.S. $=\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|$
Operating $R_{1} \rightarrow R_{1}-R_{2}-R_{3}$, we get
L.H.S. $=\left|\begin{array}{ccc}0 & -2 c & -2 b \\ b & c+a & b \\ c & c & a+b\end{array}\right|=-2\left|\begin{array}{ccc}0 & c & b \\ b & c+a & b \\ c & c & a+b\end{array}\right|$

Again operating $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$, we get
L.H.S. $=-2\left|\begin{array}{lll}0 & c & b \\ b & a & 0 \\ c & 0 & a\end{array}\right|=-2[0-c(a b-0)+b(0-a c)]=4 a b c$
Q. 18

Differentiate $\sin \left(\left\{\tan ^{-1}\left(e^{-x}\right)\right\}\right.$ w.r.t. x
Solution: Let $y=\sin \left(\tan ^{-1} e^{-x}\right)$

CAREER ACADEMY, NAHAN
Then $\frac{d y}{d x}=\frac{d}{d x}\left[\sin \left(\tan ^{-1} e^{-x}\right)\right]$

$$
\begin{aligned}
& =\cos \left(\tan ^{-1} e^{-x}\right) \cdot \frac{d}{d x}\left(\tan ^{-1} e^{-x}\right) \\
& =\cos \left(\tan ^{-1} e^{-x}\right) \cdot \frac{1}{1+\left(e^{-x}\right)^{2}} \cdot \frac{d}{d x}\left(e^{-x}\right) \\
& =\frac{\cos \left(\tan ^{-1} e^{-x}\right)}{1-e^{-2 x}} \cdot\left(-e^{-x}\right)=\frac{-e^{-x} \cdot \cos \left(\tan ^{-1} e^{-x}\right)}{1+e^{-2 x}}
\end{aligned}
$$

Or
Find $\frac{d y}{d x}$ if $x y=e^{(x-y)}$
Solution: \quad Given, that $x y=e^{(x-y)}$
Taking logarithm on both sides, we have
$\log x+\log y=\log e^{(x-y)}=x-y . \quad \quad$ (because, $\log e^{a}=a$)
Differentiating both sides w.r.t. x , we have
$\frac{1}{x}+\frac{1}{y} \frac{d y}{d x}=1-\frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}\left(\frac{1}{y}+1\right)=1-\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{1-\frac{1}{x}}{1+\frac{1}{y}} \quad$ or $\quad \frac{d y}{d x}=\frac{y}{x}\left(\frac{x-1}{y-1}\right)$.
Q. 19

Evaluate $\int \frac{5 x}{(x+1)\left(x^{2}-4\right)} d x$
Solution: Let $I=\int \frac{5 x}{(x+1)\left(x^{2}-4\right)} d x=\int \frac{5 x}{(x+1)(x-2)(x+2)} d x$
Since integrand is proper rational function, so we can decompose it into partial fraction.
That is, $I=\int\left(\frac{A}{x+1}+\frac{B}{x-2}+\frac{C}{x+2}\right) d x$
Where, $\frac{5 x}{(x+1)(x-2)(x+2)}=\frac{A}{x+1}+\frac{B}{x-2}+\frac{C}{x+2}$
$\Rightarrow 5 x=A(x-2)(x+2)+B(x+1)(x+2)+C(x+1)(x-2)$
Now, putting $x=-1$ in equation (ii), we get $A=\frac{5}{3}$
Putting, $x=2$ in equation (ii), we get $B=\frac{5}{6}$
Putting, $x=-2$ in equation (ii), we get $C=\frac{-5}{2}$
Putting the values of A, B and C in equation (i), we get

CAREER ACADEMY, NAHAN

$$
\begin{aligned}
& \\
& I
\end{aligned}=\int\left(\frac{5 / 3}{x+1}+\frac{5 / 6}{x-2}-\frac{5 / 2}{x+2}\right) d x .
$$

Q. 20

Evaluate $\int \frac{6 x+7}{\sqrt{(x-5)(x-4)}} d x$
Solution: Let $I=\int \frac{6 x+7}{\sqrt{(x-5)(x-4)}} d x=\int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}} d x$
Putting, $6 x+7=A \frac{d}{d x}\left(x^{2}-9 x+20\right)+B$
$\Rightarrow 6 x+7=A(2 x-9)+B$
By equating the coefficients of x and constant terms, we get
$2 A=6$ and $B-9 A=7 \Rightarrow A=3$ and $B=34$
Putting the values of A and B in equation (ii), we get
$6 x+7=3(2 x-9)+34$
Now, putting the value of $6 x+7$ in equation (i), we get

$$
\begin{aligned}
& I=\int \frac{3(2 x-9)+34}{\sqrt{x^{2}-9 x+20}} d x \\
\Rightarrow \quad & I=3 \int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x+34 \int \frac{d x}{\sqrt{x^{2}-9 x+20}} \\
\Rightarrow \quad & I=3 I_{1}+34 I_{2}
\end{aligned}
$$

Consider, $I_{1}=\int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x$
Putting, $x^{2}-9 x+20=t \Rightarrow(2 x-9) d x=d t$
$\Rightarrow I_{1}=\int \frac{d t}{\sqrt{t}}=\int t^{-1 / 2}+c_{1}=2 t^{1 / 2}+c_{1} \Rightarrow I_{1}=2 \sqrt{x^{2}-9 x+20}+c_{1}$
Now, consider $I_{2}=\int \frac{d x}{\sqrt{x^{2}-9 x+20}} \Rightarrow I_{2}=\int \frac{d x}{\sqrt{\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}}$
$\Rightarrow \quad I_{2}=\log \left|\left(x-\frac{9}{2}\right)+\sqrt{\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}\right|+c_{2}$
$\Rightarrow \quad I_{2}=\log \left|x-\frac{9}{2}+\sqrt{x^{2}-9 x+20}\right|+c_{2}$
Substituting the values of I_{1} and I_{2} from equations (iv) and (v) in equation (iii), we get

$$
I=6 \sqrt{x^{2}-9 x+20}+34 \log \left|x-\frac{9}{2}+\sqrt{x^{2}-9 x+20}\right|+c ;
$$

Where, $=3 c_{1}+34 c_{2}$.
Q. $21 \quad$ Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$

Solution: $\quad \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$. Then by P_{4}, we have
$\mathrm{I}=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x=\pi \int_{0}^{\pi} \frac{\operatorname{sinx} x}{1+\cos ^{2} x}-1$
Or $2 I=\int_{0}^{\pi} \frac{\sin x d x}{1+\cos ^{2} x}$
Or $\mathrm{I}=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x d x}{1+\cos ^{2} x}$
Put $\cos x=t$ so that $-\sin x d x=d t$.As $x=0, t=1$ and as $x=\pi, t=-1$
Therefore, (by P_{1})we get
$\mathrm{I}=\frac{-\pi}{2} \int_{1}^{-1} \frac{d t}{I+t^{2}}=\frac{-\pi}{2} \int_{1}^{-1} \frac{d t}{1+t^{2}}$
$=\pi \int_{0}^{1} \frac{d t}{I+t^{2}}\left(\right.$ since $\frac{1}{1+t^{2}}$ is even fuction $)$
$=\pi\left[\tan ^{-1}\right]_{0}^{1}=\pi\left[\tan ^{-1}-\tan ^{-1} 0\right]=\pi\left[\frac{\pi}{4}-0\right]=\frac{\pi^{2}}{4}$

Q. 22
 Solve the differential equation:

$(x+y) \frac{d y}{d x}=1$
Solution: Given differential equation is $(x+y) \frac{d y}{d x}=1 \Rightarrow \frac{d y}{d x}=\frac{1}{x+y}$
Taking its reciprocal, we get

$$
\begin{equation*}
\frac{d x}{d y}=x+y \Rightarrow \frac{d x}{d y}-x=y \tag{i}
\end{equation*}
$$

Clearly, equation(i) is of the form $\frac{d x}{d y}+R x=S$.
Here, $R=-1, S=y$
Now, I.F. $=e^{\int R d y}=e^{\int-d y}=e^{-y}$
Therefore, solution of equation (i) is $x($ I.F.) $)=\int(I . F)=.\int($ I.F. $) S d y$
$\Rightarrow \quad x \cdot e^{-y}=\int e^{-y} \cdot y d y$
$\Rightarrow \quad x \cdot e^{-y}=-y e^{-y}-e^{-y}+c=e^{-y}(-y-I)+c$
$\Rightarrow \quad x=-y-I+c e^{y}$
$\Rightarrow x+y+I=c e^{y}$; which is required general solution.

Solve the differential equation:
$(x-y) d y-(x+y) d x=0$
Solution: \quad Given differential equation is $(x-y) d y-(x+y) d x=0$
The differential equation (i) can be rewritten as

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x+y}{x-y}=\frac{1+\frac{y}{x}}{1-\frac{y}{x}} \tag{ii}
\end{equation*}
$$

Which is a homogeneous equation.
Putting, $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ in equation(ii), we get
$v+x \frac{d v}{d x}=\frac{1+v}{1-v} \quad \Rightarrow \quad x \frac{d v}{d x}=\frac{1+v}{1-v}-v$
$\Rightarrow x \frac{d v}{d x}=\frac{1+v^{2}}{1-v} \quad \Rightarrow \quad \frac{1-v}{1+v^{2}} d v=\frac{d x}{x}$
On integrating, we get

$$
\begin{aligned}
& \int \frac{1-v}{1+v^{2}} d v=\int \frac{d x}{x} \\
\Rightarrow & \int \frac{1}{1+v^{2}} d v-\frac{1}{2} \int \frac{2 v}{1+v^{2}} d v=\log |x|+C \\
\Rightarrow \quad & \tan ^{-1} v-\frac{1}{2} \log \left|1+v^{2}\right|=\log |x|+C \\
\Rightarrow \quad & 2 \tan ^{-1} v-\log \left\{\left(1+v^{2}\right) x^{2}\right\}=2 C \\
\Rightarrow \quad & 2 \tan ^{-1}\left(\frac{y}{x}\right)-\log \left\{\left(1+\frac{y^{2}}{x^{2}}\right) x^{2}\right\}=C_{1} \\
\Rightarrow \quad & 2 \tan ^{-1}\left(\frac{\mathrm{y}}{\mathrm{x}}\right)-\log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=\mathrm{C}, \text { where } \mathrm{c} \text { is an arbitrary constants; }
\end{aligned}
$$

which is the required general solution of given differential equation.
Q. 23

Find x if the four points $A(3,2,1), B(4, x, 5), C(4,2,-2)$ and $D(6,5,-1)$ are coplanar.
Solution: \quad Here $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\hat{\imath}+(x-2) \hat{\jmath}+4 \hat{k}$

$$
\begin{aligned}
& \overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}=\hat{\imath}+0 \hat{\jmath}-3 \hat{k} \\
& \overrightarrow{A D}=\overrightarrow{O D}-\overrightarrow{O A}=3 \hat{\imath}+3 \hat{\jmath}-2 \hat{k}
\end{aligned}
$$

If four points are coplanar then, $[\overrightarrow{A B} \overrightarrow{A C} \overrightarrow{A D}]=0$
$\Rightarrow[\overrightarrow{A B} \overrightarrow{A C} \overrightarrow{A D}]=\left|\begin{array}{ccc}1 & x-2 & 4 \\ 1 & 0 & -3 \\ 3 & 3 & -2\end{array}\right|=0$
$\Rightarrow(9)-(x-2)(-2+9)+4(3)=0$

CAREER ACADEMY, NAHAN

$$
\begin{array}{lr}
\Rightarrow & 9-7(x-2)+12=0 \\
\Rightarrow & 9-7 x+14+12=0 \\
\Rightarrow & -7 x+35=0 \\
\Rightarrow & x=5
\end{array}
$$

Q. 24 Find the vector and Cartesian equations of plane that passes through the point (5,2,-4) and perpendicular to the line with direction ratios 2,3,-1.

Solution: We have the position vector of point $(5,2,-4)$ as $\vec{a}=\hat{5}+2 \hat{\jmath}-4 \hat{k}$ and the normal vector \vec{N} Perpendicular to the plane as $\vec{N}=2 \hat{\imath}+3 \hat{\jmath}-\hat{k}$

Therefore, the vector equation of the plane is given by $(\vec{r}-\vec{a}) \cdot \vec{N}=0$

Or

$$
\begin{equation*}
[\vec{r}-(5 \hat{\imath}+2 \hat{\jmath}-4 \hat{k})] \cdot(2 \hat{\imath}+3 \hat{\jmath}-\hat{k})=0 \tag{i}
\end{equation*}
$$

Transforming (1) into Cartesian form, we have

$$
[(x-5) \hat{\imath}+(y-2) \hat{\jmath}+(z+4) \hat{k}] \cdot(2 \hat{\imath}+3 \hat{\jmath}-\hat{k})=0
$$

Or $\quad 2(x-5)+3(y-2)-1(z+4)=0$
i.e. $2 x+3 y-z=20$
which is the cartesian equation of the plane.
Q. 25 A die marked 1,2, 3 in red and 4,5, 6 in green is tossed. Let A be the event, 'the number is even' and B be the event, 'the number is red'. Are A and B independent?

Solution: \quad Since die has six faces, therefore the sample space is
$S=\{1,2,3,4,5,6\}$
Also, A : 'the number is even'
B: 'the number is red'
That is, $\mathrm{A}=\{2,4,6\} ; B=\{1,2,3\}$ and $A \cap B=\{2\}$
Now, $\mathrm{P}(\mathrm{A})=\frac{3}{6}=\frac{1}{2} ; P(B)=\frac{3}{6}=\frac{1}{2}$
and $\mathrm{P}(\mathrm{A} \cap B)=\frac{1}{6} \neq \frac{1}{2} \times \frac{1}{2}$
$\Rightarrow P(A \cap B) \neq P(A) P(B)$
$\Rightarrow A$ and B are not independent.
Q. 26

If pair of dice is thrown 4 times. If getting a doublet is considered a sucess, find the probability of two successes.

Solution: Here success is getting a doublet' and $\mathrm{n}=4$ (in case of Bernoullian trails)
When a pair of dice thrown once, then
$p=P(a$ success $)=P($ getting a doublet $)=\frac{6}{36}=\frac{1}{6}$ and
$q=P(a$ failure $)=1-p=1-\frac{1}{6}=\frac{5}{6}$
Therefore, P (two successes) $={ }^{4} C_{2}(p)^{2}(q)^{2}=\frac{4 \times 3}{2 \times 1}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{2}$

$$
=6 \times \frac{1}{36} \times \frac{25}{36}=\frac{25}{216} .
$$

Or
Give two independent events A and B such that $P(A)=0.3, P(B)=0.6$, find (i) P (A and $B)$
(ii) $\mathrm{P}(\mathrm{A}$ and not B$)$

Solution: \quad (i) $\quad P(A+B)=P(A) \times P(B)=0.3 \times 0.6=0.18$
(ii) $\quad P(A$ and not $B)=P(A) \times P(\operatorname{not} B)$

$$
\begin{aligned}
& =0.3 \times[1-P(B)] \\
& =0.3 \times(1-0.6) \\
& =0.3 \times 0.4=0.12
\end{aligned}
$$

Q. 27 Solve the following equations by Matrix Method:
[5]

$$
\begin{gathered}
2 x+3 y+3 z=5 \\
x-2 y+z=-4 \\
3 x-y-2 z=3
\end{gathered}
$$

Solution: Given system of equation is
$2 x+3 y+3 z=5, x-2 y+z=-4$ and $3 x-y-2 z=3$.
It can be written as $A X=B$;
Where $\mathrm{A}\left[\begin{array}{ccc}2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2\end{array}\right], B=\left[\begin{array}{c}5 \\ -4 \\ 3\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.
Now $|A|=\left|\begin{array}{ccc}2 & 3 & 3 \\ 1 & -2 & 1 \\ -3 & -1 & -2\end{array}\right|=2(4+1)-3(-2-3)+3(-1+6)$
$\Rightarrow|A|=10+15+15=40 \neq 0$
Since $|A| \neq 0$, therefore A^{-1} exists.
Now, adj $a=\left|\begin{array}{ccc}5 & 5 & 5 \\ 3 & -13 & 11 \\ 9 & 1 & -7\end{array}\right|=\left|\begin{array}{ccc}5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7\end{array}\right|$
and $A^{-}=\frac{\operatorname{adj} A}{|A|}=\frac{1}{40}\left[\begin{array}{ccc}5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7\end{array}\right]$
Now, the solution of the given system of equations is given by
$x=A^{-1} B=\frac{1}{40}\left[\begin{array}{ccc}5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7\end{array}\right]\left[\begin{array}{c}5 \\ -4 \\ 3\end{array}\right]=\frac{1}{40}\left[\begin{array}{c}25-12+27 \\ 25+52+3 \\ 25-44-21\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{40}\left[\begin{array}{c}40 \\ 80 \\ -40\end{array}\right]=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$
Therefore, $x=1, y=2, z=-1$.
Q. 28 Show that the right circular cone of least curved surface and given volume has an altitude equal to

$$
\sqrt{2} \text { time the radius of the base. }
$$

Solution: Let r be the radius, h be the straight height and l be the slant height of the cone.
Volume of cone (V) $=\frac{1}{3} \pi r^{2} h$

$$
h=\frac{3 V}{\pi r^{2}}
$$

Curved surface area of cone $(\mathrm{S})=\pi r l$

$$
=\pi r \sqrt{r^{2}+h^{2}}=\pi r \sqrt{r^{2}+\frac{9 V^{2}}{\pi^{2} r^{4}}}
$$

$S=\pi r \sqrt{\frac{\pi^{2} r^{6}+9 V^{2}}{\pi^{2} r^{4}}}$
$S^{2}=\pi^{2} r^{4}+9 V^{2} r^{-2}$

Differentiate both side w.r.t.r.

$$
\left.\begin{array}{l}
\frac{d s^{2}}{d r}=4 \pi^{2} r^{3}-18 V^{2} r^{-3} \\
\frac{d^{2} s^{2}}{d r^{2}}=12 \pi^{2} r^{2}+54 V^{2} r^{-4} \\
\text { Take } \frac{d s^{2}}{d r}=0 \\
4 \pi^{2} r^{3}-18 V^{2} r^{-3}=0 \\
\quad 4 \pi^{2} r^{3}=18 V^{2} r^{-3} \\
\quad 4 \pi^{2} r^{3}=\frac{18 V^{2}}{r^{3}} \\
\quad r^{6}=\frac{9}{2 \pi^{2}} \cdot \frac{1}{9} \pi^{2} r^{4} h^{2} \\
\quad r^{2}=\frac{h^{2}}{2} \\
\quad r=\frac{h}{\sqrt{2}} . \\
\left.\left.\frac{d^{2} s^{2}}{d r^{2}}\right] r=\frac{h}{\sqrt{2}}=12 \pi^{2} \frac{h^{2}}{2}+54 V^{2}\left(\frac{4}{h^{4}}\right)=6 \pi^{2} h^{2}+216 \frac{1}{3} \pi r^{2} h\right] \\
h^{2}
\end{array}\right] 00
$$

\therefore curved surface area is minimum when $r=\frac{h}{\sqrt{2}}$.
$\Rightarrow h=\sqrt{2} r$
\Rightarrow Altitude of cone is equal to $\sqrt{2}$ times the radius of the base.

Or

Find the point on the curve $y=x^{3}-11 x+5$ at which the tangent is: $y=x-11$.
Solution: $\quad y=x^{3}-11 x+5$

$$
\frac{d y}{d x}=3 x^{2}-11
$$

Slope of tangent $=3 x^{2}-11$.
Equation of tangent is $y=x-11 \Rightarrow y-x+11=0$

$$
\text { Slope }=-\frac{\operatorname{coeff.of~} x}{\operatorname{coeff.of~} y}=\frac{-1}{1}=1 .
$$

$\therefore 3 x^{2}-11=1$
$\Rightarrow 3 x^{2}=1+11$
$\Rightarrow 3 x^{2}=12$
$\Rightarrow x^{2}=4$

CAREER ACADEMY, NAHAN
$x= \pm 2$.
When $x=2, y=(2)^{3}-11 \cdot 2+5=8-22+5$

$$
y=13-22=-9
$$

\therefore Point (2, -9).
Q. 29 Find the area of region bounded by the curves : $x^{2}=y$, the line $y=x+2$ and the x -axis.

Solution: Given parabola is $\mathrm{y}=\mathrm{x}^{2}$
and line is $y=x+2$
On solving (i) and (ii), the point of contact is ($-1,1$) and ($2,-4$)

\therefore Required area is $\int_{-1}^{2}(x+2) d x-\int_{-1}^{2} x^{2} d x$
$=\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{2}-\left[\frac{x^{3}}{3}\right]_{-1}^{2}=6-\frac{1}{2}+2-3=\frac{9}{2}$ square units.
Or
Using integration find the area of region bounded by the triangle whose vertices are ($-1,0$), (1,3)
And (3,2).
Solution : To find the area of triangle, we shall draw the rough sketch of the triangle.
Equation of lineAB is
$y-0=\frac{3-0}{1-(-1)}(x+1)$

$$
\left[\because y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)\right]
$$

$y=\frac{3}{2}(x+1)$.
equation of side $B C$ is

$y-3=\frac{2-3}{3-1}(x-1)$
$\Rightarrow y-3=\frac{-1}{2}(x-1)$
$\Rightarrow=-\frac{1}{2} x+\frac{1}{2}+3=-\frac{1}{2} x+\frac{7}{2}$
Equation of side AC is

$$
\begin{aligned}
& y-0=\frac{2-0}{3-(-1)}(x+1) \\
& y=\frac{2}{4}(x+1)=\frac{1}{2}(x+1)
\end{aligned}
$$

Area of triangle

$$
\begin{aligned}
& =\int_{-1}^{1} \frac{3}{2}(x+1) d x+\int_{1}^{3}\left(\frac{-x+7}{2}\right) d x-\int_{-1}^{3} \frac{1}{2}(x+1) d x \\
& =\frac{3}{2}\left(\frac{x^{2}}{2}+x\right)_{-1}^{1}+\left(\frac{\frac{-x^{2}}{2}+7 x}{2}\right)_{1}^{3}-\frac{1}{2}\left(\frac{x^{2}}{2}+x\right)_{-1}^{3} \\
& =\frac{3}{2}\left[\left(\frac{1}{2}+1\right)-\left(\frac{1}{2}-1\right)\right]+\frac{1}{2}\left[\left(\frac{-9}{2}+21\right)-\left(\frac{-1}{2}+7\right)\right] \frac{1}{2}\left[\left(\frac{3^{2}}{2}+3\right)-\left(\frac{(-1)^{2}}{2}+(-1)\right)\right] \\
& =\frac{3}{2}\left[\frac{3}{2}+\frac{1}{2}\right]+\frac{1}{2}\left[\frac{33}{2}-\frac{13}{2}\right]-\frac{1}{2}\left[\frac{15}{2}+\frac{1}{2}\right] \\
& =3+5-4=4 \text { sq.units. }
\end{aligned}
$$

Q. 30

Find the shortest distance between the lines

$$
\begin{aligned}
& \vec{r}=(\hat{\imath}+2 \hat{\jmath}+\widehat{k}+\lambda(\hat{\imath}-\hat{\jmath}+\widehat{\boldsymbol{k}}) \text { and } \\
& \vec{r}=(2 \hat{\imath}-\hat{\jmath}-\widehat{\boldsymbol{k}})+\mu(2 \hat{\imath}+\hat{\jmath}+2 \widehat{k})
\end{aligned}
$$

Solution: Given equation of lines are,
and

$$
\begin{align*}
& \vec{r}=(\hat{\imath}+2 \hat{\jmath}+\hat{k}+\lambda(\hat{\imath}-\hat{\jmath}+\hat{k}) \text { and } \tag{i}\\
& \vec{r}=(2 \hat{\imath}-\hat{\jmath}-\hat{k})+\mu(2 \hat{\imath}+\hat{\jmath}+2 \hat{k})
\end{align*}
$$

Comparing equation (i) and (i) with $\vec{r}=\vec{a}_{2}+\lambda \vec{b}_{2}$ respectively, we get

$$
\begin{aligned}
& \vec{a}_{1}=\hat{\imath}+\widehat{2_{\jmath}}+\hat{k}, \quad \overrightarrow{b_{1}}=\lambda(\hat{\imath}-\hat{\jmath}+\hat{k}) \text { and } \\
& \text { and } \quad \overrightarrow{a_{2}}=2 \hat{\imath}-\hat{\jmath}-\widehat{k}, \quad \overrightarrow{b_{2}}=2 \hat{\imath}+\hat{\jmath}+2 \hat{k} \\
& \text { Now, } \overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -1 & 1 \\
2 & 1 & 2
\end{array}\right|=(-2-1) \hat{\imath}-(2-2) \hat{\jmath}+(1+2) \hat{k} \\
& \Rightarrow \quad \overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=-3 \hat{\imath}+3 \hat{k} \\
& \Rightarrow \quad\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2} . \\
& \text { Also, } \overrightarrow{a_{2}}-\overrightarrow{a_{1}}=(2 \hat{\imath}-\hat{\jmath}-\hat{k})-(\hat{\imath}+2 \hat{\jmath}+\hat{k})=\hat{\imath}-3 \hat{\jmath}-2 \hat{k} .
\end{aligned}
$$

Therefore, shortest distance between given lines is

$$
\begin{aligned}
& d
\end{aligned} \begin{array}{ll}
& =\left|\frac{\left.\overrightarrow{b_{1}} \times \overrightarrow{x_{2}}\right) \cdot\left(\overrightarrow{a_{2}} \times \overrightarrow{a_{1}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|=\left|\frac{(-3 \hat{\imath}+3 \hat{k}) \cdot(\hat{\imath}-3 \hat{\jmath}-2 \hat{k})}{3 \sqrt{2}}\right| \\
\Rightarrow \quad d & =\frac{|-3-6|}{3 \sqrt{2}}=\frac{9}{3 \sqrt{2}}=\frac{3}{\sqrt{2}} \text { units. }
\end{array}
$$

Or

Find the equation of the plane that passes through three points $(2,5,-3),(-2,-3,5)$ and $(5,3,-3)$.
Solution: \quad Let $\vec{a}=2 \hat{\imath}+5 \hat{\jmath}-3 \hat{k}, \vec{b}=-2 \hat{\imath}-3 \hat{\jmath}+5 \hat{k}, \vec{c}=5 \hat{\imath}+3 \hat{\jmath}-3 \hat{k}$
Then the vector equation of the plane passing through \vec{a}, \vec{b} and \vec{c} and is given by

Or

$$
(\vec{r}-\vec{a}) \cdot(\overrightarrow{R S} \times \overrightarrow{R T})=0
$$

$$
(\vec{r}-\vec{a}) \cdot[(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})]=0
$$

i.e.

$$
[\vec{r}-(2 \hat{\imath}+5 \hat{\jmath}-3 \hat{k})] \cdot[(-4 \hat{\imath}-8 \hat{\jmath}+8 \hat{k}) \times(3 \hat{\imath}-2 \hat{\jmath})]=0
$$

Minimize $Z=-3 x+4 y$
Subject to the following constraints :

$$
\begin{aligned}
& x+2 y \leq 8 \\
& 3 x+2 y \leq 12 \\
& x \geq 0, y \geq 0
\end{aligned}
$$

Solution: Objective function $z=-3 x+4 y$
Constraints are

$$
x+2 y \leq 8,3 x+2 y \leq 12, x \geq 0, y \geq 0
$$

Consider the line $x+2 y=8$
It pass through $A(8,0)$ and $B(0,4)$
Putting $x=0, y=0$ in
$x+2 y \leq 8,0 \leq 8$ which the true
\Rightarrow region $x+2 y \leq 8$ lies on and below $A B$.

Again the line $3 x+2 y=12$ passes through $\mathrm{P}(4,0), \mathrm{Q}(0,6)$. Putting $x=0, y=0$ in $3 x+2 y \leq 12$ $\Rightarrow \quad 0 \leq 12$, which is true
\therefore Region $3 x+2 y \leq 12$ lies on and below $P Q$

Here $x \geq 0$, the region lies on and to the right of y-axis
and $y \geq 0$ lies on and above $x-$ axis
On solving the equation $x+2 y=8$ and $3 x+2 y=12$
We get $x=2, y=3 \Rightarrow R$ is $(2,3)$ where $A B$ snf $P Q$ intersect the shaded region $O P R B$ is the feasible region.

At $P(4,0) \quad Z=-3 x+4 y=-12+0=-12$
At $R(2,3) \quad Z=-6+12=6$
At $B(0,4) \quad Z=0+16=16$
At $Q(0,0) \quad Z=0$
Thus minimum value of Z is -12 at $\mathrm{P}(4,0)$.

